Skip to main content

Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens

  • Protocol
  • First Online:
High-Throughput RNAi Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1470))

Abstract

RNA interference (RNAi) is a powerful technique enabling the identification of the genes involved in a certain cellular process. Here, we discuss protocols for microscopy-based RNAi screening in protonemal cells of the moss Physcomitrella patens, an emerging model system for plant cell biology. Our method is characterized by the use of conditional (inducible) RNAi vectors, transgenic moss lines in which the RNAi vector is integrated, and time-lapse fluorescent microscopy. This method allows for effective and efficient screening of >100 genes involved in various cellular processes such as mitotic cell division, organelle distribution, or cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  CAS  PubMed  Google Scholar 

  2. Cove D, Bezanilla M, Harries P et al (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  CAS  PubMed  Google Scholar 

  3. Prigge MJ, Bezanilla M (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137:3535–3543

    Article  CAS  PubMed  Google Scholar 

  4. Miki T, Naito H, Nishina M et al (2014) Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc Natl Acad Sci U S A 111:E1053–E1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakaoka Y, Miki T, Fujioka R et al (2012) An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24:1478–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vidali L, Rounds CM, Hepler PK et al (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4, e5744

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jonsson E, Yamada M, Vale RD et al (2015) Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nat Plants 1, 15087.

    Google Scholar 

  8. Vidali L, Augustine RC, Kleinman KP et al (2007) Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell 19:3705–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vidali L, Burkart GM, Augustine RC et al (2010) Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 22:1868–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Gisbergen PA, Li M, Wu SZ et al (2012) Class II formin targeting to the cell cortex by binding PI(3,5)P(2) is essential for polarized growth. J Cell Biol 198:235–250

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kosetsu K, de Keijzer J, Janson ME et al (2013) MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens. Plant Cell 25:4479–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miki T, Nishina M, Goshima G (2015) RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Plant Cell Physiol 56:737–749

    Article  CAS  PubMed  Google Scholar 

  13. Naito H, Goshima G (2015) NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens. Cell Struct Funct 40:31–41

    Article  PubMed  Google Scholar 

  14. Nakaoka Y, Kimura A, Tani T et al (2015) Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens. Plant Cell 27:228–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamada M, Miki T, Goshima G (2016) Imaging mitosis in the moss Physcomitrella patens. Methods Mol Biol 1413:263–282

    Google Scholar 

  16. Kubo M, Imai A, Nishiyama T et al (2013) System for stable beta-estradiol-inducible gene expression in the moss Physcomitrella patens. PLoS One 8, e77356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zuo J, Niu QW, Chua NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

  18. Okano Y, Aono N, Hiwatashi Y et al (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci U S A 106:16321–16326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bezanilla M, Perroud PF, Pan A et al (2005) An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes. Plant Biol (Stuttg) 7:251–257

    Article  CAS  Google Scholar 

  20. Strepp R, Scholz S, Kruse S et al (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci U S A 95:4368–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rounds CM, Bezanilla M (2013) Growth mechanisms in tip-growing plant cells. Annu Rev Plant Biol 64:243–265

    Article  CAS  PubMed  Google Scholar 

  22. Hiwatashi Y, Obara M, Sato Y et al (2008) Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20:3094–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mitsuyasu Hasebe, Yuji Hiwatashi, Minoru Kubo, and other former and current Hasebe laboratory members for all moss reagents and valuable information regarding the techniques associated with moss culturing and imaging. We also wish to thank Akiko Tomioka and Momoko Nishina for protocol development and Moé Yamada for reading the manuscript. The moss work in our laboratory is supported by the Human Frontier Science Program, the TORAY Science Foundation, and Grants-in-Aid for Scientific Research (15H01227, 15K14540 and 26711012; MEXT, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gohta Goshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miki, T., Nakaoka, Y., Goshima, G. (2016). Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens . In: Azorsa, D., Arora, S. (eds) High-Throughput RNAi Screening. Methods in Molecular Biology, vol 1470. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6337-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6337-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6335-5

  • Online ISBN: 978-1-4939-6337-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics