Skip to main content

Recent Advances on 3D Video Coding Technology: HEVC Standardization Framework

  • Chapter
  • First Online:
Connected Media in the Future Internet Era

Abstract

3D video is emerging media extension of conventional 2D video into third dimension adding depth sensation and resolving 2D viewing ambiguity. Primary usage scenario for 3D video is to support 3D video applications, where 3D depth perception of a visual scene is provided by a 3D display system. Multiview-plus-depth (MVD) is visual representation and coding format which takes 3D geometry information of acquisition system in the form of distance information. Applications require transmission of jointly encoded multiple synchronized video signals that show the same 3D scene from different viewpoints. Advances in multi-camera arrays and display technology enable new applications for 3D video. It is clear that these applications need to be based on well-defined and -documented technical standards. Recent advances and challenges in development of the 3D video formats and associated coding technologies are summarized in this chapter with focus on undergoing MPEG/ITU standardization framework for 3D extensions of HEVC high-efficiency video encoder. Research on coding efficiency improvement and complexity reduction of 3D-HEVC reference encoder implementation are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

Books

  • Assuncao P, Pinto L, Faria S (2014) Chapter 2: 3D media representation and coding. In: Kondoz A, Dagiuklas T (eds) 3D Future internet media, Springer, pp 9–38

    Google Scholar 

  • Faria SMM, Debono CJ, Nunes P, Rodrigues NMM (2015) Chapter3: 3D video representation and coding. In: Kondoz A, Dagiuklas T (eds) Novel 3D media technologies. Springer, pp. 25–48

    Google Scholar 

  • Kondoz A, Dagiuklas T (eds) (2016) Connected 3D media in the Internet era, Springer

    Google Scholar 

  • Rao KR, Bojković Z, Milovanović D (2002) Multimedia communication systems: techniques, standards and networks. Prentice Hall PTR (Pearson Education)

    Google Scholar 

  • Rao KR, Bojković Z, Milovanović D (2005) Introduction to multimedia communication: applications, middleware, networking. Wiley

    Google Scholar 

  • Leonardo C (ed) (2012) The MPEG representation of digital media. Springer

    Google Scholar 

  • Wien M (2015) High efficiency video coding: coding tools and specification. Springer Signals Commun Technol. (Chapter 12 extensions to HEVC, pp 291–308)

    Google Scholar 

  • Möller S, Raake A (2014) Quality of experience: advanced concepts, applications and methods. Springer. (Lebreton P, Barkowsky M, Raake A, Le Callet P. Chapter 20: 3D video, pp 299–313)

    Google Scholar 

  • Zhu C, Zhao Y, Yu L, Tanimoto M (2013) 3D-TV system with depth-image-based rendering: architectures, techniques and challenges, Springer. (Müller K, Merkle P, Tech G. Chapter 8: 3D video compression, pp 223–248)

    Google Scholar 

  • Dufaux F, Pesquet-Popesu B, Cagnazzo M (eds) (2013) Emerging technologies for 3D video: creation, coding, transmission and rendering. Wiley. (Cagnazzo M, Pesquet-Popescu B, Dufaux F. Chapter 6: 3D video representation and formats, pp 102–120) (Vetro A, Müller K. Chapter 8: depth-based 3D video formats and coding technology, pp 139–161)

    Google Scholar 

  • Zatt B, Shafique M, Bampi S, Henkel J (2013) 3D video coding for embedded devices: energy efficient algorithms and architectures. Springer

    Google Scholar 

  • Ozaktas HM, Onural L (eds) (2007) Three-dimensional television: capture, transmission, and display. Springer. (Smolic A, Merkle P, Müller K, Fehn C, Kauff P, Wiegand T. Chapter 9: compression of multi-view video and associated data, pp 313–350)

    Google Scholar 

  • Schreer O, Kauff P, Sikora T (eds) (2005) 3D video communication algorithms, concepts and real-time systems in human centered communication. Wiley. (Smolic A, Sikora T. Chapter 11: coding and standardization, pp 193–216)

    Google Scholar 

Journals

  • (2014) Advances in 3D video processing. J Vis Comm Image Represent 25(4)

    Google Scholar 

  • (2014) Special issue on QoE in 2D/3D video systems. J Vis Comm Image Represent 25(3)

    Google Scholar 

  • (2013) Special section on 3D video representation, compression, and rendering. IEEE Trans Image Process 22(9)

    Google Scholar 

  • (2011) Special issue 3D media and displays. Proc IEEE 99(4)

    Google Scholar 

  • (2007) Special issue on 3DTV. Signal Process Image Comm. Elsevier

    Google Scholar 

  • (2007) Special issue in Multiview imaging and 3DTV. IEEE Signal Process Mag

    Google Scholar 

  • (2007) Special issue on Multiview video coding and 3DTV. IEEE Tran CSVT

    Google Scholar 

  • (2008) Special issue on 3DTV: capture, transmission and display of 3D video. EURASIP J Adv Signal Process

    Google Scholar 

B1. Introduction

  • Sullivan G, Wiegand T (2005) Video compression—from concepts to H.264/AVC standard. Proc IEEE 93(1):18–31

    Article  Google Scholar 

  • ISO/IEC JTC1/SC29/WG11 Doc. N13364 (2013) White paper on state of the art in compression and transmission of 3D video. MPEG 103. Meeting, Geneva CH

    Google Scholar 

B2. Three-Dimensional Video Formats and Associated Compression Technology

  • Müller K, Merkle P, Wiegand T (2011) 3-D video representation using depth maps. Proc IEEE 99(4):643–656

    Article  Google Scholar 

  • Vetro A, Wiegand T, Sullivan G (2011) Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proc IEEE 99(4):626–642

    Article  Google Scholar 

  • Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circ Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  • Sullivan G, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans CSVT 22(12):1649–1668

    Google Scholar 

  • Ohm JR, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans Circ Syst Video Technol 22(12):1669–1684

    Article  Google Scholar 

  • Bossen F, Bros B, Suhring K, Flynn D (2012) HEVC complexity and implementation analysis. IEEE Trans Circ Syst Video Technol 22(12):1685–1696

    Article  Google Scholar 

  • Sullivan GJ, Boyce J, Chen Y, Ohm J-R (2013) Standardized extensions of high efficiency video coding (HEVC). IEEE J Selected Topics Signal Process 7:1001–1016

    Article  Google Scholar 

B3. HEVC Standardization Framework

  • Chen Y, Vetro A (2014) Next-generation 3D formats with depth map support. IEEE Multimedia 21(2):90–94

    Article  Google Scholar 

  • Hannuksela MM, Rusanovskyy D, Su W, Chen L, Li R, Aflaki P, Lan D, Joachimiak M, Li H, Gabbouj M (2013) Multiview-video-plus-depth coding based on the advanced video coding standard. IEEE Trans Image Process 22(9):3449–3458

    Article  Google Scholar 

  • Müller K, Schwarz H, Marpe D, Bartnik C, Bosse S, Brust H, Hinz T, Lakshman H, Merkle P, Rhee FH, Tech G, Winken M, Wiegand T (2013) 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans Image Process 22(9):3366–3378

    Article  MathSciNet  Google Scholar 

  • Domanski M, Stankiewicz O, Wegner K, Kurc M, Konieczny J, Siast J, Stankowski J, Ratajczak R, Grajek T (2013) High efficiency 3D video coding using new tools based on view synthesis. IEEE Trans Image Process 22(9):3517–3527

    Article  Google Scholar 

B4. 3D-HEVC Efficiency in Joint Coding of Dependents View and Depth Data

  • Müller K (2014) 3D extensions for high-efficiency video coding. IEEE Comsoc MMTC E-Lett 9(1)

    Google Scholar 

  • Zhang N, Zhao D, Chen Y-W, Lin J-L, Gao W (2014) Fast encoder decision for texture coding in 3D-HEVC. Signal Process Image Commun 29(9):951–961

    Article  Google Scholar 

  • Zhang Y, Kwong S, Xu L, Hu S, Jiang G, Kuo C-CJ (2013) Regional bit allocation and rate distortion optimization for multiview depth video coding with view synthesis distortion model. IEEE Trans Image Process 22(9):3497–3512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Kukolj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milovanovic, D.A., Kukolj, D., Bojkovic, Z.S. (2017). Recent Advances on 3D Video Coding Technology: HEVC Standardization Framework. In: Kondoz, A., Dagiuklas, T. (eds) Connected Media in the Future Internet Era. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4026-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4026-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-4024-0

  • Online ISBN: 978-1-4939-4026-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics