Skip to main content

In Vivo Assays for Assessing the Role of the Wilms’ Tumor Suppressor 1 (Wt1) in Angiogenesis

  • Protocol
  • First Online:
The Wilms' Tumor (WT1) Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1467))

  • 1737 Accesses

Abstract

The Wilms’ tumor suppressor gene (WT1) is widely expressed during neovascularization, but it is almost entirely absent in quiescent adult vasculature. However, in vessels undergoing angiogenesis, WT1 is dramatically upregulated. Studies have shown Wt1 has a role in both tumor and ischemic angiogenesis, but the mechanism of Wt1 action in angiogenic tissue remains to be elucidated. Here, we describe two methods for induction of in vivo angiogenesis (subcutaneous sponge implantation, femoral artery ligation) that can be used to assess the influence of Wt1 on new blood vessel formation. Subcutaneously implanted sponges stimulate an inflammatory and fibrotic response including cell infiltration and angiogenesis. Femoral artery ligation creates ischemia in the distal hindlimb and produces an angiogenic response to reperfuse the limb which can be quantified in vivo by laser Doppler flowmetry. In both of these models, the role of Wt1 in the angiogenic process can be assessed using histological/immunohistochemical staining, molecular analysis (qPCR) and flow cytometry. Furthermore, combined with suitable genetic modifications, these models can be used to explore the causal relationship between Wt1 expression and angiogenesis and to trace the lineage of cells expressing Wt1. This approach will help to clarify the importance of Wt1 in regulating neovascularization in the adult, and its potential as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khurana R, Simons M, Martin JF, Zachary IC (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112(12):1813–1824. doi:10.1161/CIRCULATIONAHA.105.535294

    Article  PubMed  Google Scholar 

  3. Vasuri F, Fittipaldi S, Buzzi M et al (2012) Nestin and WT1 expression in small-sized vasa vasorum from human normal arteries. Histol Histopathol 27(9):1195–1202

    Google Scholar 

  4. Katuri V, Gerber S, Qiu X et al (2014) WT1 regulates angiogenesis in Ewing Sarcoma Oncotarget 15:5(9) 2436–49

    Google Scholar 

  5. Dohi S, Ohno S, Ohno Y et al (2010) WT1 expression correlates with angiogenesis in endometrial cancer tissue. Anticancer Res 3192:3187–3192

    Google Scholar 

  6. Wagner K, Wagner N, Bondke A, Nafz B (2002) The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction 1. FASEB J:1117–1119. doi:10.1096/fj.01

  7. Small GR, Hadoke PWF, Sharif I et al (2005) Preventing local regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 enhances angiogenesis. Proc Natl Acad Sci U S A 102(34):12165–12170. doi:10.1073/pnas.0500641102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andrade SP, Fan TP, Lewis GP (1987) Quantitative in-vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol 68(6):755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barclay GR, Tura O, Samuel K et al (2012) Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther 3(4):23. doi:10.1186/scrt114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niiyama H, Huang NF, Rollins MD, Cooke JP (2009) Murine model of hindlimb ischemia. J Vis Exp 23:2–4. doi:10.3791/1035

    Google Scholar 

  11. Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Protoc 4(12):1737–1748, Available at: http://dx.doi.org/10.1038/nprot.2009.185

    Article  CAS  PubMed  Google Scholar 

  12. Emanueli C, Minasi A, Zacheo A et al (2001) Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation 103(1):125–132. doi:10.1161/01.CIR.103.1.125

    Article  CAS  PubMed  Google Scholar 

  13. Dar A, Domev H, Ben-Yosef O et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99. doi:10.1161/CIRCULATIONAHA.111.048264

    Article  PubMed  Google Scholar 

  14. Biscetti F, Pitocco D, Straface G et al (2011) Glycaemic variability affects ischaemia-induced angiogenesis in diabetic mice. Clin Sci (Lond) 121(12):555–564. doi:10.1042/CS20110043

    Article  CAS  Google Scholar 

  15. Chau Y-Y, Bandiera R, Serrels A et al (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16(4):367–375. doi:10.1038/ncb2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. You D, Cochain C, Loinard C et al (2008) Hypertension impairs postnatal vasculogenesis role of antihypertensive agents. Hypertension 51(6):1537–1544. doi:10.1161/HYPERTENSIONAHA.107.109066

    Article  CAS  PubMed  Google Scholar 

  17. Hosen N, Shirakata T, Nishida S et al (2007) The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21(8):1783–1791. doi:10.1038/sj.leu.2404752

    Article  CAS  PubMed  Google Scholar 

  18. Wagner K-D, Cherfils-Vicini J, Hosen N et al (2014) The Wilms’ tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat Commun 5:5852. doi:10.1038/ncomms6852

    Article  CAS  PubMed  Google Scholar 

  19. Kirkby NS, Duthie KM, Miller E et al (2012) Non-endothelial cell endothelin-B receptors limit neointima formation following vascular injury. Cardiovasc Res 95(1):19–28. doi:10.1093/cvr/cvs137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

R.O. is funded by a British Heart Foundation studentship and RMcG by a Wellcome-Trust-funded ECAT research fellowship. The authors are grateful for support from the Edinburgh British Heart Foundation Centre for Research Excellence (CoRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. McGregor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

McGregor, R.J., Ogley, R., Hadoke, P., Hastie, N. (2016). In Vivo Assays for Assessing the Role of the Wilms’ Tumor Suppressor 1 (Wt1) in Angiogenesis. In: Hastie, N. (eds) The Wilms' Tumor (WT1) Gene. Methods in Molecular Biology, vol 1467. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4023-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4023-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4021-9

  • Online ISBN: 978-1-4939-4023-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics