Skip to main content

Tools and Techniques for Wt1-Based Lineage Tracing

  • Protocol
  • First Online:
The Wilms' Tumor (WT1) Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1467))

Abstract

The spatiotemporal expression pattern of Wt1 has been extensively studied in a number of animal models to establish its function and the developmental fate of the cells expressing this gene. In this chapter, we review the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing. We describe the presently used constitutive or inducible genetic lineage tracing approaches based on the Cre/loxP system utilizing Cre recombinase expression under control of a Wt1 promoter.

To make these systems accessible, we provide laboratory protocols that include dissection and processing of the tissues for immunofluorescence and histopathological analysis of the lineage-labeled Wt1-derived cells within the embryo/tissue context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Official nomenclature of mouse lines can be found under the Jackson laboratory website: www.informatics.jax.org

References

  1. Algar E (2002) A review of the Wilms’ tumor 1 gene (WT1) and its role in hematopoiesis and leukemia. J Hematother Stem Cell Res 11:589–599

    Article  CAS  PubMed  Google Scholar 

  2. Moore AW, Schedl A, McInnes L et al (1998) YAC transgenic analysis reveals Wilms’ tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech Dev 79:169–184

    Article  CAS  PubMed  Google Scholar 

  3. Moore AW, McInnes L, Kreidberg J et al (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857

    CAS  PubMed  Google Scholar 

  4. Rudat C, Kispert A (2012) Wt1 and epicardial fate mapping. Circ Res 111:165–169

    Article  CAS  PubMed  Google Scholar 

  5. Hosen N, Shirakata T, Nishida S et al (2007) The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21:1783–1791

    Article  CAS  PubMed  Google Scholar 

  6. Zhou B, Ma Q, Rajagopal S et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. del Monte G, Casanova JC, Guadix JA et al (2011) Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res 108:824–836

    Article  PubMed  Google Scholar 

  8. Norden J, Grieskamp T, Lausch E et al (2010) Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns. Circ Res 106:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilm B, IJpenberg A, Hastie ND et al (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132:5317–5328

    Article  CAS  PubMed  Google Scholar 

  10. Kolander KD, Holtz ML, Cossette SM et al (2014) Epicardial GATA factors regulate early coronary vascular plexus formation. Dev Biol 386:204–215

    Article  CAS  PubMed  Google Scholar 

  11. Cano E, Carmona R, Muñoz-Chápuli R (2013) Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am J Physiol 305:L322–L332

    CAS  Google Scholar 

  12. Carmona R, Cano E, Mattiotti A et al (2013) Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS One 8:e55890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wessels A, van den Hoff MJB, Adamo RF et al (2012) Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 366:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feil R, Wagner J, Metzger D et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  15. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  16. Mao X, Fujiwara Y, Orkin SH et al (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci U S A 96:5037–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muzumdar MD, Tasic B, Miyamichi K et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  PubMed  Google Scholar 

  19. Dixit R, Ai X, Fine A (2013) Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. Development 140:4398–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou B, Pu WT (2012) Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ Res 111:e276–e280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Asahina K, Zhou B, Pu WT et al (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53:983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manuylov NL, Zhou B, Ma Q et al (2011) Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol 353:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chau YY, Bandiera R, Serrels A et al (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16:367–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smart N, Risebro CA, Melville AAD et al (2007) Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann N Y Acad Sci 1112:171–188

    Article  CAS  PubMed  Google Scholar 

  25. Reinert RB, Kantz J, Misfeldt AA et al (2012) Tamoxifen-Induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7:e33529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson SP, Langan-Fahey SM, Johnson DA et al (1991) Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 19:36–43

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bettina Wilm or Ramon Muñoz-Chapuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wilm, B., Muñoz-Chapuli, R. (2016). Tools and Techniques for Wt1-Based Lineage Tracing. In: Hastie, N. (eds) The Wilms' Tumor (WT1) Gene. Methods in Molecular Biology, vol 1467. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4023-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4023-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4021-9

  • Online ISBN: 978-1-4939-4023-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics