Skip to main content

The Role of WT1 in Embryonic Development and Normal Organ Homeostasis

  • Protocol
  • First Online:
The Wilms' Tumor (WT1) Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1467))

Abstract

The Wilms’ tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein–protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toska E, Roberts SJ (2014) Mechanisms of transcriptional regulation by WT1 (Wilms’ tumour 1). Biochem J 461:15–32

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong JF, Pritchard-Jones K, Bickmore WA et al (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97

    Article  CAS  PubMed  Google Scholar 

  3. Wilm B, Ipenberg A, Hastie ND et al (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132:5317–5328

    Article  CAS  PubMed  Google Scholar 

  4. Asahina K, Zhou B, Pu WT et al (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53:983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixit R, Ai X, Fine A (2013) Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. Development 140:4398–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cano E, Carmona R, Muñoz-Chápuli R (2013) Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am J Physiol 305:L322–L332

    CAS  Google Scholar 

  7. Carmona R, Cano E, Mattiotti A et al (2013) Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS One 8:e55890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Norden J, Grieskamp T, Lausch E et al (2010) Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns. Circ Res 106:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buckler AJ, Pelletier J, Haber DA et al (1991) Isolation, characterization, and expression of the murine Wilms’ tumor gene (WT1) during kidney development. Mol Cell Biol 11:1707–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pelletier J, Bruening W, Li FP et al (1991) WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353(6343):431–434

    Article  CAS  PubMed  Google Scholar 

  11. Armstrong JF, Kaufman MH, van Heyningen V et al (1993) Embryonic kidney rudiments grown in adult mice fail to mimic the Wilms’ phenotype, but show strain-specific morphogenesis. Exp Nephrol 1:168–174

    CAS  PubMed  Google Scholar 

  12. Rackley RR, Flenniken AM, Kuriyan NP et al (1993) Expression of the Wilms’ tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ 4:1023–1031

    CAS  PubMed  Google Scholar 

  13. Ryan G, Steele-Perkins V, Morris JF et al (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 121:867–875

    CAS  PubMed  Google Scholar 

  14. Moore AW, Schedl A, McInnes L et al (1998) YAC transgenic analysis reveals Wilms’ tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech Dev 79:169–184

    Article  CAS  PubMed  Google Scholar 

  15. Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  CAS  PubMed  Google Scholar 

  16. Motamedi FJ, Badro DA, Clarkson M et al (2014) WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nat Commun 5:4444

    Article  CAS  PubMed  Google Scholar 

  17. Davies JA, Ladomery M, Hohenstein P et al (2004) Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum Mol Genet 13:235–246

    Article  CAS  PubMed  Google Scholar 

  18. Essafi A, Webb A, Berry RL et al (2011) A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell 21:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stark K, Vainio S, Vassileva G et al (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372(6507):679–683

    Article  CAS  PubMed  Google Scholar 

  20. Kispert A, Vainio S, McMahon AP et al (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    CAS  PubMed  Google Scholar 

  21. Sim EU, Smith A, Szilagi E et al (2002) Wnt-4 regulation by the Wilms’ tumour suppressor gene, WT1. Oncogene 21:2948–2960

    Article  CAS  PubMed  Google Scholar 

  22. Murugan S, Shan J, Kühl SJ et al (2012) WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Exp Cell Res 318:1134–1145

    Article  CAS  PubMed  Google Scholar 

  23. Guo G, Morrison DJ, Licht JD et al (2004) WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. J Am Soc Nephrol 15:2851–2856

    Article  CAS  PubMed  Google Scholar 

  24. Wagner N, Wagner KD, Xing Y et al (2004) The major podocyte protein nephrin is transcriptionally activated by the Wilms’ tumor suppressor WT1. J Am Soc Nephrol 15:3044–3051

    Article  PubMed  Google Scholar 

  25. Palmer RE, Kotsianti A, Cadman B et al (2001) WT1 regulates the expression of the major glomerular podocyte membrane protein podocalyxin. Curr Biol 11:1805–1809

    Article  CAS  PubMed  Google Scholar 

  26. Guo JK, Menke AL, Gubler MC et al (2002) WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 11:651–659

    Article  CAS  PubMed  Google Scholar 

  27. Wagner N, Wagner KD, Scholz H et al (2006) Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms’ tumor suppressor Wt1. Am J Physiol Regul Integr Comp Physiol 291:R779–R787

    Article  CAS  PubMed  Google Scholar 

  28. Hartwig S, Ho J, Pandey P et al (2010) Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 137:1189–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107

    Article  CAS  PubMed  Google Scholar 

  30. Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203:323–333

    Article  CAS  PubMed  Google Scholar 

  31. Capel B, Albrecht KH, Washburn LL et al (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84:127–131

    Article  CAS  PubMed  Google Scholar 

  32. Martineau J, Nordqvist K, Tilmann C et al (1997) Male-specific cell migration into the developing gonad. Curr Biol 7:958–968

    Article  CAS  PubMed  Google Scholar 

  33. Tilmann C, Capel B (1999) Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126:2883–2890

    CAS  PubMed  Google Scholar 

  34. Hammes A, Guo JK, Lutsch G et al (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329

    Article  CAS  PubMed  Google Scholar 

  35. Shimamura R, Fraizer GC, Trapman J et al (1997) The Wilms’ tumor gene WT1 can regulate genes involved in sex determination and differentiation: SRY, Müllerian-inhibiting substance, and the androgen receptor. Clin Cancer Res 3:2571–2580

    CAS  PubMed  Google Scholar 

  36. Hossain A, Saunders GF (2001) The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276:16817–16823

    Article  CAS  PubMed  Google Scholar 

  37. Matsuzawa-Watanabe Y, Inoue J, Semba K (2003) Transcriptional activity of testis-determining factor SRY is modulated by the Wilms’ tumor 1 gene product, WT1. Oncogene 22:7900–7904

    Article  PubMed  CAS  Google Scholar 

  38. Miyamoto Y, Taniguchi H, Hamel F et al (2008) A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bradford ST, Wilhelm D, Bandiera R et al (2009) A cell-autonomous role for WT1 in regulating Sry in vivo. Hum Mol Genet 18:3429–3438

    Article  CAS  PubMed  Google Scholar 

  40. Wilhelm D, Englert C (2002) The Wilms’ tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev 16:1839–1851

    Google Scholar 

  41. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL et al (1998) Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93:445–454

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Prawitt D, Bardeesy N et al (1999) The Wilms’ tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation. Mol Cell Biol 19:2289–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao F, Maiti S, Alam N et al (2006) The Wilms’ tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci U S A 103:11987–11992

    Google Scholar 

  44. Chang H, Gao F, Guillou F et al (2008) Wt1 negatively regulates beta-catenin signaling during testis development. Development 135:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen SR, Chen M, Wang XN et al (2013) The Wilms’ tumor gene, Wt1, maintains testicular cord integrity by regulating the expression of Col4a1 and Col4a2. Biol Reprod 88:56

    Google Scholar 

  46. Rao MK, Pham J, Imam JS et al (2006) Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev 20:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu SY, Kubo M, Chun SY et al (1995) Wilms’ tumor protein WT1 as an ovarian transcription factor: decreases in expression during follicle development and repression of inhibin-alpha gene promoter. Mol Endocrinol 9:1356–1366

    CAS  PubMed  Google Scholar 

  48. Natoli TA, Alberta JA, Bortvin A et al (2004) Wt1 functions in the development of germ cells in addition to somatic cell lineages of the testis. Dev Biol 268:429–440

    Article  CAS  PubMed  Google Scholar 

  49. Moore AW, McInnes L, Kreidberg J et al (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857

    CAS  PubMed  Google Scholar 

  50. Martínez-Estrada OM, Lettice LA, Essafi A et al (2010) Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet 42:89–93

    Article  PubMed  CAS  Google Scholar 

  51. von Gise A, Zhou B, Honor LB et al (2011) WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Dev Biol 356:421–431

    Article  CAS  Google Scholar 

  52. Guadix JA, Ruiz-Villalba A, Lettice L et al (2011) Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 138:1093–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen T, Chang TC, Kang JO et al (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207

    Article  CAS  PubMed  Google Scholar 

  54. Stuckmann I, Evans S, Lassar AB (2003) Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 255:334–349

    Article  CAS  PubMed  Google Scholar 

  55. Wagner N, Wagner KD, Theres H et al (2005) Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms’ tumor transcription factor Wt1. Genes Dev 19:2631–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirschner KM, Wagner N, Wagner KD et al (2006) The Wilms’ tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the alpha4integrin gene. J Biol Chem 281:31930–31939

    Google Scholar 

  57. Kirschner KM, Hagen P, Hussels CS et al (2008) The Wilms’ tumor suppressor Wt1 activates transcription of the erythropoietin receptor in hematopoietic progenitor cells. FASEB J 22:2690–2701

    Article  CAS  PubMed  Google Scholar 

  58. Dame C, Kirschner KM, Bartz KV et al (2006) Wilms’ tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood 107:4282–4290

    Google Scholar 

  59. Wu H, Lee SH, Gao J et al (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605

    CAS  PubMed  Google Scholar 

  60. Velecela V, Lettice LA, Chau YY et al (2013) WT1 regulates the expression of inhibitory chemokines during heart development. Hum Mol Genet 22:5083–5095

    Article  CAS  PubMed  Google Scholar 

  61. Rudat C, Kispert A (2012) Wt1 and epicardial fate mapping. Circ Res 111:165–169

    Article  CAS  PubMed  Google Scholar 

  62. Zhou B, Ma Q, Rajagopal S et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wessels A, van den Hoff MJB, Adamo RF et al (2012) Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 366:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cano E, Carmona R, Ruiz-Villalba A et al (2016) Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci USA 113:656–661

    Google Scholar 

  65. Red-Horse K, Ueno H, Weissman IL et al (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu B, Zhang Z, Lui W et al (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hanson J, Gorman J, Reese J et al (2007) Regulation of vascular endothelial growth factor, VEGF, gene promoter by the tumor suppressor, WT1. Front Biosci 12:2279–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCarty G, Awad O, Loeb DM (2011) WT1 protein directly regulates expression of vascular endothelial growth factor and is a mediator of tumor response to hypoxia. J Biol Chem 286:43634–43643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vasuri F, Fittipaldi S, Buzzi M et al (2012) Nestin and WT1 expression in small-sized vasa vasorum from human normal arteries. Histol Histopathol 27:1195–1202

    CAS  PubMed  Google Scholar 

  70. Kirschner KM, Sciesielski LK, Scholz H et al (2010) Wilms’ tumour protein Wt1 stimulates transcription of the gene encoding vascular endothelial cadherin. Pflugers Arch 460:1051–1061

    Article  CAS  PubMed  Google Scholar 

  71. Zhou B, Pu WT (2012) Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ Res 111:e276–e280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. King-Underwood L, Little S, Baker M et al (2005) Wt1 is not essential for hematopoiesis in the mouse. Leuk Res 29:803–812

    Article  CAS  PubMed  Google Scholar 

  73. Herzer U, Crocoll A, Barton D et al (1999) The Wilms’ tumor suppressor gene wt1 is required for development of the spleen. Curr Biol 9:837–840

    Google Scholar 

  74. Koehler K, Franz T, Dear TN et al (2000) Hox11 is required to maintain normal Wt1 mRNA levels in the developing spleen. Dev Dyn 218:201–206

    Article  CAS  PubMed  Google Scholar 

  75. Wagner KD, Wagner N, Vidal VP et al (2002) The Wilms’ tumor gene Wt1 is required for normal development of the retina. EMBO J 21:1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Que J, Wilm B, Hasegawa H et al (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105:16626–16630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. IJpenberg A, Pérez-Pomares JM, Guadix JA et al (2007) Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev Biol 312:157–170

    Article  CAS  PubMed  Google Scholar 

  78. Chau YY, Hastie ND (2012) The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet 28:515–524

    Article  CAS  PubMed  Google Scholar 

  79. Chau YY, Bandiera R, Serrels A et al (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16:367–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chau YY, Brownstein D, Mjoseng H et al (2011) Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet 7:e1002404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schumacher VA, Schlötzer-Schrehardt U, Karumanchi SA et al (2011) WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J Am Soc Nephrol 22:1286–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karki S, Surolia R, Hock TD et al (2014) Wilms’ tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB J 28:1122–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang XN, Li ZS, Ren Y et al (2013) The Wilms’ tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genet 9:e1003645

    Google Scholar 

  84. Zheng QS, Wang XN, Wen Q et al (2014) Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction 147:45–52

    Google Scholar 

  85. Chen M, Wang X, Wang Y et al (2014) Wt1 is involved in Leydig cell steroid hormone biosynthesis by regulating paracrine factor expression in mice. Biol Reprod 90:71

    Article  PubMed  CAS  Google Scholar 

  86. Wen Q, Zheng QS, Li XX et al (2014) Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. Am J Physiol Endocrinol Metab 307:E1131–E1143

    Article  CAS  PubMed  Google Scholar 

  87. Gao F, Zhang J, Wang X et al (2014) Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum Mol Genet 23:333–341

    Article  CAS  PubMed  Google Scholar 

  88. Makrigiannakis A, Amin K, Coukos G et al (2000) Regulated expression and potential roles of p53 and Wilms’ tumor suppressor gene (WT1) during follicular development in the human ovary. J Clin Endocrinol Metab 85:449–459

    CAS  PubMed  Google Scholar 

  89. Makrigiannakis A, Coukos G, Mantani A et al (2001) Expression of Wilms’ tumor suppressor gene (WT1) in human endometrium: regulation through decidual differentiation. J Clin Endocrinol Metab 86:5964–5972

    CAS  PubMed  Google Scholar 

  90. Fraizer GC, Patmasiriwat P, Zhang X et al (1995) Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow. Blood 86:4704–4706

    CAS  PubMed  Google Scholar 

  91. Ariyaratana S, Loeb DM (2007) The role of the Wilms’ tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 9:1–17

    Google Scholar 

  92. Inoue K, Tamaki H, Ogawa H et al (1998) Wilms’ tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells. Blood 91:2969–2976

    CAS  PubMed  Google Scholar 

  93. Tsuboi A, Oka Y, Ogawa H et al (1999) Constitutive expression of the Wilms’ tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res 23:499–505

    Article  CAS  PubMed  Google Scholar 

  94. Loeb DM, Summers JL, Burwell EA et al (2003) An isoform of the Wilms’ tumor suppressor gene potentiates granulocytic differentiation. Leukemia 17:965–971

    Article  CAS  PubMed  Google Scholar 

  95. Ellisen LW, Carlesso N, Cheng T et al (2001) The Wilms’ tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J 20:1897–1909

    Google Scholar 

  96. Algar E (2002) A review of the Wilms’ tumor 1 gene (WT1) and its role in hematopoiesis and leukemia. J Hematother Stem Cell Res 11:589–599

    Article  CAS  PubMed  Google Scholar 

  97. Hosen N, Shirakata T, Nishida S et al (2007) The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21:1783–1791

    Article  CAS  PubMed  Google Scholar 

  98. Alberta JA, Springett GM, Rayburn H et al (2003) Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 101:2570–2574

    Article  CAS  PubMed  Google Scholar 

  99. Cunningham TJ, Palumbo I, Grosso M et al (2011) WT1 regulates murine hematopoiesis via maintenance of VEGF isoform ratio. Blood 122:188–192

    Article  CAS  Google Scholar 

  100. Wagner KD, Wagner N, Bondke A et al (2002) The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J 16:1117–1119

    CAS  PubMed  Google Scholar 

  101. Wagner KD, Wagner N, Wellmann S et al (2003) Oxygen-regulated expression of the Wilms’ tumor suppressor Wt1 involves hypoxia-inducible factor-1 (HIF-1). FASEB J 17:1364–1366

    CAS  PubMed  Google Scholar 

  102. Scholz H, Wagner KD, Wagner N (2009) Role of the Wilms’ tumour transcription factor, Wt1, in blood vessel formation. Pflugers Arch 458:315–323

    Article  CAS  PubMed  Google Scholar 

  103. Lee SB, Haber DA (2001) Wilms’ tumor and the WT1 gene. Exp Cell Res 264:74–99

    Google Scholar 

  104. Loeb DM, Sukumar S (2002) The role of WT1 in oncogenesis: tumor suppressor or oncogene? Int J Hematol 76:117–126

    Google Scholar 

  105. Brieger J, Weidmann E, Fenchel K et al (1994) The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia 8:2138–2143

    CAS  PubMed  Google Scholar 

  106. Menssen HD, Renkl HJ, Rodeck U et al (1995) Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 9:1060–1067

    CAS  PubMed  Google Scholar 

  107. Yang L, Han Y, Suarez SF et al (2007) A tumor suppressor and oncogene: the WT1 story. Leukemia 21:868–876

    CAS  PubMed  Google Scholar 

  108. Rein LA, Chao NJ (2014) WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy. Expert Opin Investig Drugs 23:417–426

    Article  CAS  PubMed  Google Scholar 

  109. Sugiyama H (2010) WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol 40:377–387

    Article  PubMed  Google Scholar 

  110. Vasu S, Blum W (2013) Emerging immunotherapies in older adults with acute myeloid leukemia. Curr Opin Hematol 20:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Carmona R, González-Iriarte M, Pérez-Pomares JM et al (2001) Localization of the Wilm’s tumour protein WT1 in avian embryos. Cell Tissue Res 303:173–186

    Article  CAS  PubMed  Google Scholar 

  112. Pérez-Pomares JM, Phelps A, Sedmerova M et al (2002) Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 247:307–326

    Article  PubMed  CAS  Google Scholar 

  113. Schlueter J, Männer J, Brand T (2006) BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol 295:546–558

    Article  CAS  PubMed  Google Scholar 

  114. Schulte I, Schlueter J, Abu-Issa R et al (2007) Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn 236:684–695

    Article  PubMed  Google Scholar 

  115. Ishii Y, Garriock RJ, Navetta AM et al (2007) BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell 19:307–316

    Article  CAS  Google Scholar 

  116. Torlopp A, Schlueter J, Brand T (2010) Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Dev Dyn 239:2393–2403

    Article  CAS  PubMed  Google Scholar 

  117. Bollig F, Mehringer R, Perner B et al (2006) Identification and comparative expression analysis of a second wt1 gene in zebrafish. Dev Dyn 235:554–561

    Article  CAS  PubMed  Google Scholar 

  118. Bollig F, Perner B, Besenbeck B et al (2009) A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development 136:2883–2892

    Article  CAS  PubMed  Google Scholar 

  119. Tomar R, Mudumana SP, Pathak N et al (2014) Osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol 25:2539–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Miles C, Elgar G, Coles E et al (1998) Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13. Proc Natl Acad Sci U S A 95:13068–13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nakayama Y, Yamamoto T, Matsuda Y et al (1998) Cloning of cDNA for newt WT1 and the differential expression during spermatogenesis of the Japanese newt, Cynops pyrrhogaster. Dev Growth Differ 40:599–608

    Article  CAS  PubMed  Google Scholar 

  122. Semba K, Saito-Ueno R, Takayama G et al (1996) cDNA cloning and its pronephros-specific expression of the Wilms’ tumor suppressor gene, WT1, from Xenopus laevis. Gene 175:167–172

    Article  CAS  PubMed  Google Scholar 

  123. Carroll TJ, Vize PD (1996) Wilms’ tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros. Dev Dyn 206:131–138

    Article  CAS  PubMed  Google Scholar 

  124. Wallingford JB, Carroll TJ, Vize PD et al (1998) Precocious expression of the Wilms’ tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol 202:103–112

    Article  CAS  PubMed  Google Scholar 

  125. Shimeld SM (2008) C2H2 zinc finger genes of the Gli, Zic, KLF, SP, Wilms’ tumour, Huckebein, Snail, Ovo, Spalt, Odd, Blimp-1, Fez and related gene families from Branchiostoma floridae. Dev Genes Evol 218:639–649

    Article  CAS  PubMed  Google Scholar 

  126. Losada-Pérez M, Gabilondo H, Molina I (2013) Klumpfuss controls FMRFamide expression by enabling BMP signaling within the NB5-6 lineage. Development 140:2181–2189

    Article  PubMed  CAS  Google Scholar 

  127. Gabilondo H, Losada-Pérez M, Monedero I et al (2014) A new role of Klumpfuss in establishing cell fate during the GMC asymmetric cell division. Cell Tissue Res 358:621–626

    Article  PubMed  Google Scholar 

  128. Terriente-Felix A, Li J, Collins S, Mulligan A et al (2013) Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140:926–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Wilm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wilm, B., Muñoz-Chapuli, R. (2016). The Role of WT1 in Embryonic Development and Normal Organ Homeostasis. In: Hastie, N. (eds) The Wilms' Tumor (WT1) Gene. Methods in Molecular Biology, vol 1467. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4023-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4023-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4021-9

  • Online ISBN: 978-1-4939-4023-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics