Skip to main content

An Ex Vivo Tissue Culture Model for Anti-angiogenic Drug Testing

  • Protocol
  • First Online:
Tumor Angiogenesis Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1464))

Abstract

Angiogenesis, defined as the growth of new blood vessels from existing ones, plays a key role in development, growth, and tissue repair. Its necessary role in tumor growth and metastasis has led to the creation of a new category of anti-angiogenic cancer therapies. Preclinical development and evaluation of potential drug candidates require models that mimic real microvascular networks. Here, we describe the rat mesentery culture model as a simple ex vivo assay that offers time-lapse imaging of intact microvascular network remodeling and demonstrate its application for anti-angiogenic drug testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaunas R, Kang H, Bayless KJ (2011) Synergistic regulation of angiogenic sprouting by biochemical factors and wall shear stress. Cell Mol Bioeng 4(4):547–559. doi:10.1007/s12195-011-0208-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nicosia RF, Ottinetti A (1990) Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 63(1):115–122

    CAS  PubMed  Google Scholar 

  3. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD (2012) Engineering of in vitro 3D capillary beds by self-directed angiogenic sprouting. PLoS One 7(12):e50582. doi:10.1371/journal.pone.0050582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108(37):15342–15347. doi:10.1073/pnas.1105316108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peirce SM, Mac Gabhann F, Bautch VL (2012) Integration of experimental and computational approaches to sprouting angiogenesis. Curr Opin Hematol 19(3):184–191. doi:10.1097/MOH.0b013e3283523ea6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Norrby K, Franzen L (1980) A tissue model for the study of cell proliferation in vitro. In Vitro 16(1):31–37

    Article  CAS  PubMed  Google Scholar 

  7. Stapor PC, Azimi MS, Ahsan T, Murfee WL (2013) An angiogenesis model for investigating multicellular interactions across intact microvascular networks. Am J Physiol Heart Circ Physiol 304(2):H235–245. doi:10.1152/ajpheart.00552.2012

    Article  CAS  PubMed  Google Scholar 

  8. Azimi MS, Myers L, Lacey M, Stewart SA, Shi Q, Katakam PV, Mondal D, Murfee WL (2015) An ex vivo model for anti-angiogenic drug testing on intact microvascular networks. PLoS One 10(3):e0119227. doi:10.1371/journal.pone.0119227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Norrby K (2006) In vivo models of angiogenesis. J Cell Mol Med 10(3):588–612

    Article  CAS  PubMed  Google Scholar 

  10. Mathur A, Abd Elmageed ZY, Liu X, Kostochka ML, Zhang H, Abdel-Mageed AB, Mondal D (2014) Subverting ER-stress towards apoptosis by nelfinavir and curcumin coexposure augments docetaxel efficacy in castration resistant prostate cancer cells. PLoS One 9(8):e103109. doi:10.1371/journal.pone.0103109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mondal D, Pradhan L, Ali M, Agrawal KC (2004) HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: exacerbation by inflammatory cytokines and amelioration by antioxidants. Cardiovasc Toxicol 4(3):287–302

    Article  CAS  PubMed  Google Scholar 

  12. Mondal D, Liu K, Hamblin M, Lasky JA, Agrawal KC (2013) Nelfinavir suppresses insulin signaling and nitric oxide production by human aortic endothelial cells: protective effects of thiazolidinediones. Ochsner J 13(1):76–90

    PubMed  PubMed Central  Google Scholar 

  13. Bhandarkar SS, Arbiser JL (2007) Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol 595:185–195. doi:10.1007/978-0-387-46401-5_7

    Article  PubMed  Google Scholar 

  14. Lennernas B, Albertsson P, Damber JE, Norrby K (2004) Antiangiogenic effect of metronomic paclitaxel treatment in prostate cancer and non-tumor tissue in the same animals: a quantitative study. APMIS 112(3):201–209. doi:10.1111/j.1600-0463.2004.apm1120306.x

    Article  PubMed  Google Scholar 

  15. Albertsson P, Lennernas B, Norrby K (2012) Low-dosage metronomic chemotherapy and angiogenesis: topoisomerase inhibitors irinotecan and mitoxantrone stimulate VEGF-A-mediated angiogenesis. APMIS 120(2):147–156. doi:10.1111/j.1600-0463.2011.02830.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Phamduy TB, Sweat RS, Azimi MS, Burow ME, Murfee WL, Chrisey DB (2015) Printing cancer cells into intact microvascular networks: a model for investigating cancer cell dynamics during angiogenesis. Integr Biol (Camb) 7(9):1068–1078. doi:10.1039/c5ib00151j

    Article  CAS  Google Scholar 

  17. Sweat RS, Sloas DC, Murfee WL (2014) VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 21(6):532–540. doi:10.1111/micc.12132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health Grant 5-P20GM103629-04 to WLM and the Tulane Center for Aging and the Tulane Hypertension and Renal Center of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter L. Murfee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Azimi, M.S., Lacey, M., Mondal, D., Murfee, W.L. (2016). An Ex Vivo Tissue Culture Model for Anti-angiogenic Drug Testing. In: Ribatti, D. (eds) Tumor Angiogenesis Assays. Methods in Molecular Biology, vol 1464. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3999-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3999-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3997-8

  • Online ISBN: 978-1-4939-3999-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics