Skip to main content

Fractal Analysis in Neurological Diseases

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Abstract

Over the last decades, fractal analysis has been applied to the study of the spatial and temporal complexity of a wide range of objects in biology and medicine, including the irregular and complex patterns of the nervous system. In clinical neurosciences, fractal geometry has emerged as a powerful tool to objectively analyze and quantify the intricate structures comprising the topological and functional complexity of the human brain, shedding light on the understanding of the brain function at a systems level. The fractal approach has the potential to allow physicians and scientists to predict clinical outcomes, classification between normal and pathological states, and, ultimately, the identification and diagnosis of certain neurological conditions. In this chapter, the main applications of fractal analysis into clinical neurosciences are reviewed, with special emphasis on the diagnostic precision of the fractal dimension value in different neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya UR, Sreec SV, Swapnad G, Martisa RJ, Surie JS. Automated EEG analysis of epilepsy: a review. Knowl-Based Syst. 2013;45:147–65.

    Article  Google Scholar 

  2. Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Puthankatti SD, et al. A novel depression diagnosis index using nonlinear features in EEG signals. Eur Neurol. 2015;74:79–83.

    Article  PubMed  Google Scholar 

  3. Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25:85–92.

    Article  PubMed  Google Scholar 

  4. Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol. 2010;27:328–33.

    Article  PubMed  Google Scholar 

  5. Akar E, Kara S, Akdemir H, Kiris A. Fractal dimension analysis of cerebellum in chiari malformation type I. Comput Biol Med. 2015;64:179–86.

    Article  PubMed  Google Scholar 

  6. Besthorn C, Sattel H, Hentschel F, Daniel S, Zerfass R, Forstl H. Quantitative EEG in frontal lobe dementia. J Neural Transm Suppl. 1996;47:169–81.

    Article  CAS  PubMed  Google Scholar 

  7. Cassot F, Lauwers F, Lorthois S, Puwanarajah P, Duvernoy H. Scaling laws for branching vessels of human cerebral cortex. Microcirculation. 2009;16:331, 44, 2 p following 344.

    Article  PubMed  Google Scholar 

  8. Cassot F, Lauwers F, Fouard C, Prohaska S, Lauwers-Cances V. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation. 2006;13:1–18.

    Article  CAS  PubMed  Google Scholar 

  9. Castiglioni P. What is wrong in katz’s method? comments on: “A note on fractal dimensions of biomedical waveforms”. Comput Biol Med. 2010;40:950–2.

    Article  PubMed  Google Scholar 

  10. Cavallari M, Stamile C, Umeton R, Calimeri F, Orzi F. Novel method for automated analysis of retinal images: results in subjects with hypertensive retinopathy and CADASIL. Biomed Res Int. 2015;2015:752957.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cavallari M, Falco T, Frontali M, Romano S, Bagnato F, Orzi F. Fractal analysis reveals reduced complexity of retinal vessels in CADASIL. PLoS One. 2011;6:e19150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheung CY, Tay WT, Ikram MK, Ong YT, De Silva DA, Chow KY, et al. Retinal microvascular changes and risk of stroke: the Singapore Malay eye study. Stroke. 2013;44:2402–8.

    Article  PubMed  Google Scholar 

  13. Cusenza M, Accardo A, Zanini S, Brambilla P. Analysis of awake and sleep EEG in autistic children. Int J Bioelectromagnetism. 2012;14:80–3.

    Google Scholar 

  14. Di Ieva A, Le Reste PJ, Carsin-Nicol B, Ferre JC, Cusimano MD. Diagnostic value of fractal analysis for the differentiation of brain tumors using 3-tesla MR susceptibility-weighted imaging. Neurosurgery. 2016.

    Google Scholar 

  15. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martin-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21:30–43.

    Article  PubMed  Google Scholar 

  16. Di Ieva A, Niamah M, Menezes RJ, Tsao M, Krings T, Cho YB, et al. Computational fractal-based analysis of brain arteriovenous malformation angioarchitecture. Neurosurgery. 2014;75:72–9.

    Article  PubMed  Google Scholar 

  17. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2013;20:403–17.

    Article  PubMed  Google Scholar 

  18. Esteban FJ, Padilla N, Sanz-Cortes M, de Miras JR, Bargallo N, Villoslada P, et al. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. Neuroimage. 2010;53:1225–32.

    Article  PubMed  Google Scholar 

  19. Esteban FJ, Sepulcre J, de Miras JR, Navas J, de Mendizabal NV, Goni J, et al. Fractal dimension analysis of grey matter in multiple sclerosis. J Neurol Sci. 2009;282:67–71.

    Article  PubMed  Google Scholar 

  20. Esteban FJ, Sepulcre J, de Mendizabal NV, Goni J, Navas J, de Miras JR, et al. Fractal dimension and white matter changes in multiple sclerosis. Neuroimage. 2007;36:543–9.

    Article  PubMed  Google Scholar 

  21. Etcher L, Whall A, Kumar R, Devanand D, Yeragani V. Nonlinear indices of circadian changes in individuals with dementia and aggression. Psychiatry Res. 2012;199:77–8.

    Article  PubMed  Google Scholar 

  22. Gomez C, Mediavilla A, Hornero R, Abasolo D, Fernandez A. Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med Eng Phys. 2009;31:306–13.

    Article  PubMed  Google Scholar 

  23. Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, et al. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage. 2006;32:626–36.

    Article  PubMed  Google Scholar 

  24. Henderson G, Ifeachor E, Hudson N, Goh C, Outram N, Wimalaratna S, et al. Development and assessment of methods for detecting dementia using the human electroencephalogram. IEEE Trans Biomed Eng. 2006;53:1557–68.

    Article  PubMed  Google Scholar 

  25. Herman P, Kocsis L, Eke A. Fractal branching pattern in the pial vasculature in the cat. J Cereb Blood Flow Metab. 2001;21:741–53.

    Article  CAS  PubMed  Google Scholar 

  26. Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ. Fractal-based brain tumor detection in multimodal MRI. Appl Math Comput. 2009;207:23–41.

    Article  Google Scholar 

  27. Iftekharuddin KM, Islam MA, Shaik J, Parra C, Ogg R. Automatic brain-tumor detection in MRI: methodology and statistical validation. SPIE Med Imag. 2005;5747:2012–22.

    Google Scholar 

  28. John AM, Elfanagely O, Ayala CA, Cohen M, Prestigiacomo CJ. The utility of fractal analysis in clinical neuroscience. Rev Neurosci. 2015;26:633–45.

    Article  PubMed  Google Scholar 

  29. Karperien AL, Jelinek HF. Fractal, multifractal, and lacunarity analysis of microglia in tissue engineering. Front Bioeng Biotechnol. 2015;3:51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Katz MJ. Fractals and the analysis of waveforms. Comput Biol Med. 1988;18:145–56.

    Article  CAS  PubMed  Google Scholar 

  31. Kawasaki R, Che Azemin MZ, Kumar DK, Tan AG, Liew G, Wong TY, et al. Fractal dimension of the retinal vasculature and risk of stroke: a nested case-control study. Neurology. 2011;76:1766–7.

    Article  CAS  PubMed  Google Scholar 

  32. King R. Computation of local fractal dimension values of the human cerebral cortex. Appl Math. 2014;5:1733–40.

    Article  Google Scholar 

  33. King RD, Brown B, Hwang M, Jeon T, George AT. Alzheimer’s disease neuroimaging initiative. Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage. 2010;53:471–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lauwers F, Cassot F, Lauwers-Cances V, Puwanarajah P, Duvernoy H. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. Neuroimage. 2008;39:936–48.

    Article  PubMed  Google Scholar 

  35. Li X, Jiang J, Zhu W, Yu C, Sui M, Wang Y, et al. Asymmetry of prefrontal cortical convolution complexity in males with attention-deficit/hyperactivity disorder using fractal information dimension. Brain Dev. 2007;29:649–55.

    Article  PubMed  Google Scholar 

  36. Lopez-de-Ipina K, Alonso-Hernández JB, Solé-Casals J, Travieso-González CM, Ezeiza A, Faúndez-Zanuy M, et al. Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: a fractal dimension approach. Neurocomputing. 2015;150:392–401.

    Article  Google Scholar 

  37. Manabe Y, Honda E, Shiro Y, Sakai K, Kohira I, Kashihara K, et al. Fractal dimension analysis of static stabilometry in Parkinson’s disease and spinocerebellar ataxia. Neurol Res. 2001;23:397–404.

    Article  CAS  PubMed  Google Scholar 

  38. Michail E, Chouvarda I, Maglaveras N. Benzodiazepine administration effect on EEG fractal dimension: results and causalities. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2350–3.

    PubMed  Google Scholar 

  39. Minnich B, Bartel H, Lametschwandtner A. Quantitative microvascular corrosion casting by 2D- and 3D-morphometry. Ital J Anat Embryol. 2001;106:213–20.

    CAS  PubMed  Google Scholar 

  40. Mustafa N, Ahearn TS, Waiter GD, Murray AD, Whalley LJ, Staff RT. Brain structural complexity and life course cognitive change. Neuroimage. 2012;61:694–701.

    Article  PubMed  Google Scholar 

  41. Ong YT, De Silva DA, Cheung CY, Chang HM, Chen CP, Wong MC, et al. Microvascular structure and network in the retina of patients with ischemic stroke. Stroke. 2013;44:2121–7.

    Article  PubMed  Google Scholar 

  42. Panerai RB. Complexity of the human cerebral circulation. Philos Trans A Math Phys Eng Sci. 2009;367:1319–36.

    Article  PubMed  Google Scholar 

  43. Reishofer G, Koschutnig K, Enzinger C, Ebner F, Ahammer H. Fractal dimension and vessel complexity in patients with cerebral arteriovenous malformations. PLoS One. 2012;7:e41148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sabeti M, Katebi SD, Boostani R, Price GW. A new approach for EEG signal classification of schizophrenic and control participants. Exp Syst Appl. 2011;38:2063–71.

    Article  Google Scholar 

  45. Sandu AL, Rasmussen Jr IA, Lundervold A, Kreuder F, Neckelmann G, Hugdahl K, et al. Fractal dimension analysis of MR images reveals grey matter structure irregularities in schizophrenia. Comput Med Imaging Graph. 2008;32:150–8.

    Article  PubMed  Google Scholar 

  46. Sandu AL, Specht K, Beneventi H, Lundervold A, Hugdahl K. Sex-differences in grey-white matter structure in normal-reading and dyslexic adolescents. Neurosci Lett. 2008;438:80–4.

    Article  CAS  PubMed  Google Scholar 

  47. Smitha KA, Gupta AK, Jayasree RS. Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Phys Med Biol. 2015;60:6937–47.

    Article  CAS  PubMed  Google Scholar 

  48. Somfai GM, Tatrai E, Laurik L, Varga BE, Olvedy V, Smiddy WE, et al. Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage. BMC Bioinform. 2014;15:295, 2105-15-295.

    Article  Google Scholar 

  49. Talu S. Multifractal characterisation of human retinal blood vessels. Oftalmologia. 2012;56:63–71.

    PubMed  Google Scholar 

  50. Wu YT, Shyu KK, Jao CW, Wang ZY, Soong BW, Wu HM, et al. Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). Neuroimage. 2010;49:539–51.

    Article  PubMed  Google Scholar 

  51. Yuan Q, Zhou W, Liu Y, Wang J. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 2012;24:415–21.

    Article  PubMed  Google Scholar 

  52. Zhang L, Butler AJ, Sun CK, Sahgal V, Wittenberg GF, Yue GH. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function. Brain Res. 2008;1228:229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang L, Dean D, Liu JZ, Sahgal V, Wang X, Yue GH. Quantifying degeneration of white matter in normal aging using fractal dimension. Neurobiol Aging. 2007;28:1543–55.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Zhou W, Yuan S. Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial EEG. Int J Neural Syst. 2015;25:1550020.

    Article  PubMed  Google Scholar 

  55. Zhang Y, Zhou W, Yuan S, Yuan Q. Seizure detection method based on fractal dimension and gradient boosting. Epilepsy Behav. 2015;43:30–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco J. Esteban or Antonio Di Ieva MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esteban, F.J., Díaz-Beltrán, L., Di Ieva, A. (2016). Fractal Analysis in Neurological Diseases. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_13

Download citation

Publish with us

Policies and ethics