Skip to main content

Targeting of ASH Domain-Containing Proteins to the Centrosome

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1454))

Abstract

A growing number of studies have used new generation technologies to characterize the protein constituents of cilia and centrosomes. This has led to the identification of a vast number of candidate ciliary or centrosomal proteins, whose subcellular localization needs to be investigated and validated. Here, we describe a simple and inexpensive method for analyzing the subcellular localization of candidate cilium- or centrosome-associated proteins, and we illustrate the utility as well as the pitfalls of this method by applying it to a group of ASH (ASPM, SPD-2, Hydin) domain-containing proteins, previously predicted to be cilia- or centrosome-associated proteins based on bioinformatic analyses. By generating plasmids coding for epitope-tagged full-length (FL) or truncated versions of the ASH domain-containing proteins TRAPPC8, TRAPPC13, NPHP4, and DLEC1, followed by expression and quantitative immunofluorescence microscopy (IFM) analysis in cultured human telomerase-immortalized retinal pigmented epithelial (hTERT-RPE1) cells, we could confirm that TRAPPC13 and NPHP4 are highly enriched at the base of primary cilia, whereas DLEC1 seems to associate specifically with motile cilia. Results for TRAPPC8 were inconclusive since epitope-tagged TRAPPC8 fusion proteins were unstable/degraded in cells, emphasizing the need for combining IFM analysis with western blotting in such studies. The method described should be applicable to other candidate ciliary or centrosomal proteins as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASH:

ASPM, SPD-2, Hydin

ATCC:

American-type culture collection

DAPI:

4′ 6-Diamidino-2-phenylindole, dihydrochloride

DLEC1:

Deleted in lung and esophageal cancer 1

DMEM:

Dulbecco’s modified Eagle’s medium

DTT:

Dithiothreitol

ECL:

Enhanced chemiluminescence

EDTA:

Ethylenediaminetetraacetic acid

EGFP:

Enhanced GFP

FAP:

Flagella-associated protein

FL:

Full length

GFP :

Green fluorescent protein

hTERT-RPE1 :

Human telomerase-immortalized retinal pigmented epithelial

IFM:

Immunofluorescence microscopy

LB:

Luria-Bertani

LDS:

Loading sample buffer

MFI:

Mean fluorescence intensity

MSP:

Major sperm protein

NPHP4:

Nephronophthisis 4

OCRL:

Oculocerebrorenal syndrome of Lowe

PACT:

Pericentrin-AKAP450 centrosomal targeting

PBS:

Phosphate-buffered saline

RT:

Room temperature

siRNA:

Small interfering RNA

TBS-T:

Tris-buffered saline with Tween-20

TPR:

Tetratricopeptide

TRAPP:

Transport protein particle

TRAPPC:

TRAPP complex

References

  1. Arnaiz O, Cohen J, Tassin AM, Koll F (2014) Remodeling Cildb, a popular database for cilia and links for ciliopathies. Cilia 3:9. doi:10.1186/2046-2530-3-9

    Article  PubMed Central  Google Scholar 

  2. Ponting CP (2006) A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22(9):1031–1035. doi:10.1093/bioinformatics/btl022

    Article  CAS  Google Scholar 

  3. Schou KB, Morthorst SK, Christensen ST, Pedersen H (2014) Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia 3:6. doi:10.1186/2046-2530-3-6

    Article  PubMed Central  Google Scholar 

  4. Tarr DE, Scott AL (2005) MSP domain proteins. Trends Parasitol 21(5):224–231. doi:10.1016/j.pt.2005.03.009

    Article  CAS  Google Scholar 

  5. Bork P, Holm L, Sander C (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242(4):309–320. doi:10.1006/jmbi.1994.1582

    CAS  Google Scholar 

  6. Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, Sheffield VC, Scheller RH, Jackson PK (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A 108(7):2759–2764. doi:10.1073/pnas.1018823108

    Article  CAS  PubMed Central  Google Scholar 

  7. Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1(6):524–529. doi:10.1093/embo-reports/kvd105

    Article  CAS  PubMed Central  Google Scholar 

  8. Kishi K, van Vugt MA, Okamoto K, Hayashi Y, Yaffe MB (2009) Functional dynamics of Polo-like kinase 1 at the centrosome. Mol Cell Biol 29(11):3134–3150. doi:10.1128/MCB.01663-08

    Article  CAS  PubMed Central  Google Scholar 

  9. Januschke J, Reina J, Llamazares S, Bertran T, Rossi F, Roig J, Gonzalez C (2013) Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat Cell Biol 15(3):241–248. doi:10.1038/ncb2671

    Article  CAS  Google Scholar 

  10. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113

    Article  CAS  PubMed Central  Google Scholar 

  11. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. doi:10.1126/science.1260419

    Article  Google Scholar 

  12. DiPetrillo CG, Smith EF (2010) Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. J Cell Biol 189(3):601–612. doi:10.1083/jcb.200912009

    Article  CAS  PubMed Central  Google Scholar 

  13. Brown JM, Dipetrillo CG, Smith EF, Witman GB (2012) A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J Cell Sci 125(Pt 16):3904–3913. doi:10.1242/jcs.107151

    Article  CAS  PubMed Central  Google Scholar 

  14. Lechtreck KF, Witman GB (2007) Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 176(4):473–482. doi:10.1083/jcb.200611115

    Article  CAS  PubMed Central  Google Scholar 

  15. Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14(4):431–437. doi:10.1038/ncb2450

    Article  CAS  PubMed Central  Google Scholar 

  16. Zhang D, Aravind L (2012) Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 11(20):3861–3875. doi:10.4161/cc.22068

    Article  CAS  PubMed Central  Google Scholar 

  17. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP-JBTS-MKS Protein Network reveals ciliopathy disease genes and pathways. Cell 145(4):513–528. doi:10.1016/j.cell.2011.04.019

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Copenhagen Excellence Programme for Interdisciplinary Research and the Danish Council for Independent Research (1331-00254). S.K.M. was partially supported by a Ph.D. fellowship from the Department of Biology, University of Copenhagen. We thank Sophie Saunier for the gift of human NPHP4 cDNA, Søren L. Johansen for technical assistance, Kenneth B. Schou for assistance with DLEC1 and NPHP4 PCR and cloning, and Louise Lindbæk for assistance with image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotte B. Pedersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verdier, P., Morthorst, S.K., Pedersen, L.B. (2016). Targeting of ASH Domain-Containing Proteins to the Centrosome. In: Satir, P., Christensen, S. (eds) Cilia. Methods in Molecular Biology, vol 1454. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3789-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3789-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3787-5

  • Online ISBN: 978-1-4939-3789-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics