Skip to main content

Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

Over the past 20 years, zebrafish have proven to be a valuable model to dissect the signaling pathways involved in hematopoiesis, including Hematopoietic Stem and Progenitor Cell (HSPC) formation and homeostasis. Despite tremendous efforts to generate the tools necessary to characterize HSPCs in vitro and in vivo the zebrafish community still lacks standardized methods to quantify HSPCs across laboratories. Here, we describe three methods used routinely in our lab, and in others, to reliably enumerate HSPCs in zebrafish embryos: large-scale live imaging of transgenic reporter lines, Fluorescence-Activated Cell Sorting (FACS), and in vitro cell culture. While live imaging and FACS analysis allows enumeration of total or site-specific HSPCs, the cell culture assay provides the unique opportunity to test the functional potential of isolated HSPCs, similar to those employed in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murayama E et al (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25:963–975

    Article  CAS  PubMed  Google Scholar 

  2. Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bertrand JY, Kim AD, Teng S, Traver D (2008) CD41+ cmyb + precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135:1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kissa K et al (2008) Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111:1147–1156

    Article  CAS  PubMed  Google Scholar 

  5. Ciau-Uitz A, Monteiro R, Kirmizitas A, Patient R (2014) Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp Hematol 42:669–683

    Article  CAS  PubMed  Google Scholar 

  6. Carroll KJ, North TE (2014) Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol 42:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. North TE et al (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672

    Article  CAS  PubMed  Google Scholar 

  8. Burns CE et al (2002) Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol 30:1381–1389

    Article  CAS  PubMed  Google Scholar 

  9. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115

    Article  CAS  PubMed  Google Scholar 

  10. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iwanami N (2014) Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency. Exp Hematol 42:697–706

    Article  CAS  PubMed  Google Scholar 

  12. Zhang P, Liu F (2011) In vivo imaging of hematopoietic stem cell development in the zebrafish. Front Med 5:239–247

    Article  PubMed  Google Scholar 

  13. Stachura DL et al (2011) Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118:1274–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stachura DL, Traver D (2011) Cellular dissection of zebrafish hematopoiesis. Methods Cell Biol 101:75–110

    Article  PubMed  Google Scholar 

  15. Lam EYN et al (2009) Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood 113:1241–1249

    Article  CAS  PubMed  Google Scholar 

  16. Lin H-F et al (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106:3803–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. North TE et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu H et al (2005) Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 281:256–269

    Article  CAS  PubMed  Google Scholar 

  19. Kikuchi K et al (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20:397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Traver D et al (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4:1238–1246

    Article  CAS  PubMed  Google Scholar 

  21. Lepilina A et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619

    Article  CAS  PubMed  Google Scholar 

  22. Svoboda O et al (2014) Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 124:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akitake CM, Macurak M, Halpern ME, Goll MG (2011) Transgenerational analysis of transcriptional silencing in zebrafish. Dev Biol 352:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom Chapter 1, Unit 1.14–1.14.20

    Google Scholar 

Download references

Acknowledgments

We thank David Traver (University of California, San Diego) and David Stachura (California State University, Chico) for sharing their protocols, assays, and reagents; and P. Crozier, R. Handin, and K. Poss for providing runx1:eGFP, CD41:eGFP and flk1:dsRed transgenic lines, respectively. We also thank David Stachura and Wolfram Goessling for critical reading of the manuscript. This work was supported by the Harvard Stem Cell Institute, the American Society of Hematology, and National Institutes of Health NIDDK 1R01DK098241-01A1 and 3R01DK098241-03S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trista E. North .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Esain, V., Cortes, M., North, T.E. (2016). Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics