Skip to main content

Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1447))

Abstract

Mitogen activated protein kinases (MAPK) pathways play a key role in orchestrating the eukaryotic cellular response to different stimuli. In this process, phosphorylation of both conserved threonine and tyrosine residues of MAPKs is essential for their activation. Identification of tyrosine and dual specificity protein phosphatases capable of dephosphorylating these phosphosites is thus critical to gain insight into their regulation. Due to the conservation of pivotal elements in eukaryotic signaling, yeast has turned into a valuable tool to increase the knowledge of MAPK signaling in other cell types. Here we describe an in vivo method to evaluate the capacity of a protein, from yeast or other origin, to act as a MAPK phosphatase. It relies on the ability of the phosphatase to reduce, when overexpressed, both the amount of activated MAPK and the transcription from a specific promoter regulated by the corresponding pathway. To this end, the pathway has to be previously activated, preferentially through overexpression of a hyperactive allele of an upstream component within the MAPK module. Additionally, the ability of an overexpressed “trapping” inactive phosphatase version to modify these readouts is also analyzed. Western blotting analysis with specific anti-phospho MAPK antibodies and flow cytometry-based determination of fluorescence produced by GFP whose expression is driven by MAPK-regulated promoters are the selected techniques for monitoring these readouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chi A, Huttenhower C, Geer LY et al (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104:2193–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22

    Article  CAS  PubMed  Google Scholar 

  3. Martin H, Flandez M, Nombela C et al (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16

    Article  CAS  PubMed  Google Scholar 

  4. Tonks NK, Neel BG (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 13:182–195

    Article  CAS  PubMed  Google Scholar 

  5. Caunt CJ, Keyse SM (2013) Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J 280:489–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engelberg D, Perlman R, Levitzki A (2014) Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 26:2865–2878

    Article  CAS  PubMed  Google Scholar 

  7. Roberts CJ, Nelson B, Marton MJ et al (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    Article  CAS  PubMed  Google Scholar 

  8. Garcia R, Bermejo C, Grau C et al (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279:15183–15195

    Article  CAS  PubMed  Google Scholar 

  9. Posas F, Chambers JR, Heyman JA et al (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255

    Article  CAS  PubMed  Google Scholar 

  10. Sacristan-Reviriego A, Martin H, Molina M (2015) Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways. Fungal Genet Biol 77:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Rispail N, Soanes DM, Ant C et al (2009) Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298

    Article  CAS  PubMed  Google Scholar 

  12. Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569–3572

    Article  CAS  PubMed  Google Scholar 

  13. Tonks NK, Neel BG (1996) From form to function: signaling by protein tyrosine phosphatases. Cell 87:365–368

    Article  CAS  PubMed  Google Scholar 

  14. Blanchetot C, Chagnon M, Dubé N et al (2005) Substrate-trapping techniques in the identification of cellular PTP targets. Methods 35:44–53

    Article  CAS  PubMed  Google Scholar 

  15. Sacristan-Reviriego A, Madrid M, Cansado J et al (2014) A conserved non-canonical docking mechanism regulates the binding of dual specificity phosphatases to cell integrity mitogen-activated protein kinases (MAPKs) in budding and fission yeasts. PLoS One 9:e85390

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722

    Article  CAS  PubMed  Google Scholar 

  17. Martin H, Shales M, Fernandez-Pinar P et al (2015) Differential genetic interactions of yeast stress response MAPK pathways. Mol Syst Biol 11:800

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Watanabe Y, Irie K, Matsumoto K (1995) Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15:5740–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Irie K, Gotoh Y, Yashar BM et al (1994) Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265:1716–1719

    Article  CAS  PubMed  Google Scholar 

  21. Stevenson BJ, Rhodes N, Errede B et al (1992) Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev 6:1293–1304

    Article  CAS  PubMed  Google Scholar 

  22. Wurgler-Murphy SM, Maeda T, Witten EA et al (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Centro de Citometría y Microscopía de Fluorescencia (UCM, Madrid, Spain) for flow cytometry analysis. This work was made possible thanks to grant BIO2013-44112-P from Ministerio de Economía y Competitividad, (Spain) and S2011/BMD-2414 from Comunidad Autónoma de Madrid (Spain). A.S-R is a recipient of a FPU fellowship from Ministerio de Educación y Ciencia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sacristán-Reviriego, A., Molina, M., Martín, H. (2016). Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs. In: Pulido, R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 1447. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3746-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3746-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3744-8

  • Online ISBN: 978-1-4939-3746-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics