Skip to main content

Stereotactic Surgery in Rats

  • Protocol
  • First Online:
Experimental Neurosurgery in Animal Models

Part of the book series: Neuromethods ((NM,volume 116))

Abstract

Animal models represent the final step to complete preclinical investigations. Here, we describe in detail the principles and procedures for the surgical, toxin-induced animal models for Parkinson’s disease (PD), and Huntington’s disease (HD). Using highly precise stereotactic intracerebral injections of toxins into the nigrostriatal pathway and basal ganglia, we are able to target specific neural circuits in different regions of the dopaminergic and GABAergic system. In addition, validated protocols for adult and neonatal cell transplantation to reconstruct the destructed neuronal circuits as models for neural repair are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horsley V, Clarke RH (1908) The structure and functions of the cerebellum examined by a new method. Brain 31:45–124

    Article  Google Scholar 

  2. Paxinos G, Franklin K (2012) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  3. Paxinos G, Franklin K (2006) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  4. Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    Article  CAS  PubMed  Google Scholar 

  5. Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444

    Article  CAS  PubMed  Google Scholar 

  6. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  7. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  8. McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576

    Article  CAS  PubMed  Google Scholar 

  9. Amalric M, Moukhles H, Nieoullon A, Daszuta A (1995) Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat. Eur J Neurosci 7:972–980

    Article  CAS  PubMed  Google Scholar 

  10. Kirik D, Rosenblad C, Björklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259–277

    Article  CAS  PubMed  Google Scholar 

  11. Creese I, Burt DR, Snyder SH (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197:596–598

    Article  CAS  PubMed  Google Scholar 

  12. Marshall JF, Ungerstedt U (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur J Pharmacol 41:361–367

    Article  CAS  PubMed  Google Scholar 

  13. Dunnett SB, Robbins TW (1992) The functional role of mesotelencephalic dopamine systems. Biol Rev Camb Philos Soc 67:491–518

    Article  CAS  PubMed  Google Scholar 

  14. Dunnett SB, Björklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand Suppl 522:39–47

    CAS  PubMed  Google Scholar 

  15. Dunnett SB (2010) Chapter 55: neural transplantation. Handb Clin Neurol 95:885–912

    Article  PubMed  Google Scholar 

  16. Goto S, Hirano A, Matsumoto S (1989) Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration. Ann Neurol 26:766–770

    Article  CAS  PubMed  Google Scholar 

  17. Carman LS, Gage FH, Shults CW (1991) Partial lesion of the substantia nigra: relation between extent of lesion and rotational behavior. Brain Res 553:275–283

    Article  CAS  PubMed  Google Scholar 

  18. van Oosten RV, Cools AR (2002) Differential effects of a small, unilateral, 6-hydroxydopamine-induced nigral lesion on behavior in high and low responders to novelty. Exp Neurol 173:245–255

    Article  PubMed  Google Scholar 

  19. Bentlage C, Nikkhah G, Cunningham MG, Björklund A (1999) Reformation of the nigrostriatal pathway by fetal dopaminergic micrografts into the substantia nigra is critically dependent on the age of the host. Exp Neurol 159:177–190

    Article  CAS  PubMed  Google Scholar 

  20. Nikkhah G, Cunningham MG, Cenci MA, McKay RD, Björklund A (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J Neurosci 15:3548–3561

    CAS  PubMed  Google Scholar 

  21. Nikkhah G, Eberhard J, Olsson M, Björklund A (1995) Preservation of fetal ventral mesencephalic cells by cool storage: in-vitro viability and TH-positive neuron survival after microtransplantation to the striatum. Brain Res 687:22–34

    Article  CAS  PubMed  Google Scholar 

  22. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    Article  CAS  PubMed  Google Scholar 

  23. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983.

    Google Scholar 

  24. Kieburtz K, MacDonald M, Shih C, Feigin A, Steinberg K, Bordwell K, Zimmerman C, Srinidhi J, Sotack J, Gusella J (1994) Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet 31:872–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR (1997) The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 60:1202–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Borrell-Pagès M, Zala D, Humbert S, Saudou F (2006) Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63:2642–2660

    Article  PubMed  Google Scholar 

  27. Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A (2004) Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat 27:143–164

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura K, Aminoff MJ (2007) Huntington’s disease: clinical characteristics, pathogenesis and therapies. Drugs Today (Barc) 43:97–116

    Article  CAS  Google Scholar 

  29. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  CAS  PubMed  Google Scholar 

  30. Bordelon YM, Chesselet MF, Nelson D, Welsh F, Erecińska M (1997) Energetic dysfunction in quinolinic acid-lesioned rat striatum. J Neurochem 69:1629–1639

    Article  CAS  PubMed  Google Scholar 

  31. Ribeiro CAJ, Grando V, Dutra Filho CS, Wannmacher CMD, Wajner M (2006) Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. J Neurochem 99:1531–1542

    Article  CAS  PubMed  Google Scholar 

  32. Schwarcz R, Okuno E, White RJ, Bird ED, Whetsell WO (1988) 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc Natl Acad Sci U S A 85:4079–4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339

    Article  CAS  PubMed  Google Scholar 

  34. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11:1649–1659

    CAS  PubMed  Google Scholar 

  35. Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, Bird ED (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 108:80–87

    Article  CAS  PubMed  Google Scholar 

  36. Ferrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF (1993) Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol 119:46–71

    Article  CAS  PubMed  Google Scholar 

  37. Roberts RC, Ahn A, Swartz KJ, Beal MF, DiFiglia M (1993) Intrastriatal injections of quinolinic acid or kainic acid: differential patterns of cell survival and the effects of data analysis on outcome. Exp Neurol 124:274–282

    Article  CAS  PubMed  Google Scholar 

  38. Vazey EM, Chen K, Hughes SM, Connor B (2006) Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp Neurol 199:384–396

    Article  PubMed  Google Scholar 

  39. Döbrössy MD, Dunnett SB (2003) Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp Neurol 184:274–284

    Article  PubMed  Google Scholar 

  40. Döbrössy MD, Dunnett SB (2006) The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats. Exp Neurol 199:373–383

    Article  PubMed  Google Scholar 

  41. Döbrössy MD, Dunnett SB (2006) Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. Eur J Neurosci 24:3223–3233

    Article  PubMed  Google Scholar 

  42. Döbrössy MD, Dunnett SB (2007) The corridor task: striatal lesion effects and graft-mediated recovery in a model of Huntington’s disease. Behav Brain Res 179:326–330

    Article  PubMed  Google Scholar 

  43. Döbrössy MD, Svendsen CN, Dunnett SB (1996) Bilateral striatal lesions impair retention of an operant test of short-term memory. Brain Res Bull 41:159–165

    Article  PubMed  Google Scholar 

  44. Brasted PJ, Döbrössy MD, Robbins TW, Dunnett SB (1998) Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers. Brain Res Bull 46:487–493

    Article  CAS  PubMed  Google Scholar 

  45. Döbrössy MD, Svendsen CN, Dunnett SB (1995) The effects of bilateral striatal lesions on the acquisition of an operant test of short term memory. Neuroreport 6:2049–2053

    Article  PubMed  Google Scholar 

  46. Furtado JC, Mazurek MF (1996) Behavioral characterization of quinolinate-induced lesions of the medial striatum: relevance for Huntington’s disease. Exp Neurol 138:158–168

    Article  CAS  PubMed  Google Scholar 

  47. Isacson O, Brundin P, Kelly PA, Gage FH, Björklund A (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature 311:458–460

    Article  CAS  PubMed  Google Scholar 

  48. Shear DA, Dong J, Gundy CD, Haik-Creguer KL, Dunbar GL (1998) Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 22:1217–1240

    Article  CAS  PubMed  Google Scholar 

  49. Cunningham MG, McKay RD (1993) A hypothermic miniaturized stereotaxic instrument for surgery in newborn rats. J Neurosci Methods 47:105–114

    Article  CAS  PubMed  Google Scholar 

  50. Jiang W, Büchele F, Papazoglou A, Döbrössy M, Nikkhah G (2009) Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington’s disease. J Neurosci Methods 179:219–223

    Article  CAS  PubMed  Google Scholar 

  51. Pruszak J, Just L, Isacson O, Nikkhah G (2009) Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. Curr Protoc Stem Cell Biol; Chapter 2:Unit 2D.5

    Google Scholar 

  52. Roedter A, Winkler C, Samii M, Walter GF, Brandis A, Nikkhah G (2001) Comparison of unilateral and bilateral intrastriatal 6-hydroxydopamine-induced axon terminal lesions: evidence for interhemispheric functional coupling of the two nigrostriatal pathways. J Comp Neurol 432:217–229

    Article  CAS  PubMed  Google Scholar 

  53. Nikkhah G, Cunningham MG, Jödicke A, Knappe U, Björklund A (1994) Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res 633:133–143

    Article  CAS  PubMed  Google Scholar 

  54. Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A (1994) A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 63:57–72

    Article  CAS  PubMed  Google Scholar 

  55. Nikkhah G, Rosenthal C, Falkenstein G, Roedter A, Papazoglou A, Brandis A (2009) Microtransplantation of dopaminergic cell suspensions: further characterization and optimization of grafting parameters. Cell Transplant 18:119–133

    Article  PubMed  Google Scholar 

  56. Hahn M, Timmer M, Nikkhah G (2009) Survival and early functional integration of dopaminergic progenitor cells following transplantation in a rat model of Parkinson’s disease. J Neurosci Res 87:2006–2019

    Article  CAS  PubMed  Google Scholar 

  57. Brandis A, Kuder H, Knappe U, Jödicke A, Schönmayr R, Samii M, Walter GF, Nikkhah G (1998) Time-dependent expression of donor- and host-specific major histocompatibility complex class I and II antigens in allogeneic dopamine-rich macro- and micrografts: comparison of two different grafting protocols. Acta Neuropathol (Berl) 95:85–97

    Article  CAS  Google Scholar 

  58. Steiner B, Winter C, Blumensath S, Paul G, Harnack D, Nikkhah G, Kupsch A (2008) Survival and functional recovery of transplanted human dopaminergic neurons into hemiparkinsonian rats depend on the cannula size of the implantation instrument. J Neurosci Methods 169:128–134

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Maciaczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maciaczyk, J., Kahlert, U.D., Döbrössy, M., Nikkhah, G. (2016). Stereotactic Surgery in Rats. In: Janowski, M. (eds) Experimental Neurosurgery in Animal Models. Neuromethods, vol 116. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3730-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3730-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3728-8

  • Online ISBN: 978-1-4939-3730-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics