Skip to main content

Mouse Sperm Cryopreservation and Recovery of Genetically Modified Mice

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Highly definable genetically, the humble mouse is the “reagent” mammal of choice with which to probe and begin to understand the human condition in all its complexities. With the recent advance in direct genome editing via targeted nucleases, e.g., TALEN and CRISPR/Cas9, the possibilities in using these sophisticated tools have increased substantially leading to a massive increase in the variety of strain numbers of genetically modified lines. With this increase comes a greater need to economically and creatively manage their numbers. Further, once characterized, lines may be of limited use but still need to be archived in a format allowing their rapid resurrection. Further, maintaining colonies on “the shelf” is financially draining and carries potential risks including natural disaster loss, disease, and strain contamination. Here we outline a simple and economic protocol to cryopreserve mouse sperm from many different genetic backgrounds, and outline its recovery via in vitro fertilization (IVF). The combined use of sperm cryopreservation and IVF now allows a freedom and versatility in mouse management facilitating rapid line close down with the option to later recover and rapidly expand as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taft RA, Davisson M, Wiles MV (2006) Know thy mouse. Trends Genet 22(12):649–653

    Article  CAS  PubMed  Google Scholar 

  2. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330(6148):576–578

    Article  CAS  PubMed  Google Scholar 

  3. Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44(3):419–428

    Article  CAS  PubMed  Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  5. Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roopenian DC, Low BE, Christianson GJ, Proetzel G, Sproule TJ, Wiles MV (2015) Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs. MAbs 7(2):344–351

    Article  PubMed  PubMed Central  Google Scholar 

  7. Waterston R, Lindblad-Toh K, Birney E, Rogers J, Abril J, Agarwal P, Agarwala R et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  8. Takao K, Miyakawa T (2015) Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 112(4):1167–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bogue MA, Grubb SC, Maddatu TP, Bult CJ (2007) Mouse Phenome Database (MPD). Nucleic Acids Res 35(suppl 1):D720–D730

    Google Scholar 

  10. Sincell M (2001) Houston flood: research toll is heavy in time and money. Science 293(5530):589

    Article  CAS  PubMed  Google Scholar 

  11. Fortier AL, Lopes FL, DarricarrËre N, Martel J, Trasler JM (2008) Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 17(11):1653–1665

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Ock SA, Chian RC (2006) Effect of gonadotrophin stimulation on mouse oocyte quality and subsequent embryonic development in vitro. Reprod Biomed Online 12(3):304–314

    Article  PubMed  Google Scholar 

  13. Ostermeier GC, Wiles MV, Farley JS, Taft RA (2008) Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS One 3(7):e2792

    Article  PubMed  PubMed Central  Google Scholar 

  14. Whittingham DG (1980) Principles of embryo preservation. In: Ashwood-Smith MJ, Farrant J (eds) Low temperature preservation in medicine and biology pitman medical. Tunbridge Wells, England, pp 65–83

    Google Scholar 

  15. Lyon MF (1981) Sensitivity of various germ-cell stages to environmental mutagens. Mutat Res 87:323–345

    Article  CAS  PubMed  Google Scholar 

  16. Tomlinson M (2008) Risk management in cryopreservation associated with assisted reproduction. Cryo Letters 29(2):165–174

    CAS  PubMed  Google Scholar 

  17. International Society for B, Environmental R (2008) Best practices for repositories: collection, storage, distribution and retrieval of biological materials for research. Cell Preserv Technol 6:3–58

    Article  Google Scholar 

  18. Takeo T, Horikoshi Y, Nakao S, Sakoh K, Ishizuka Y, Tsutsumi A, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Nakagata N (2015) Cysteine analogs with a free thiol group promote fertilization by reducing disulfide bonds in the zona pellucida of mice. Biol Reprod 92(4):90. doi:10.1095/biolreprod.114.125443

    Article  PubMed  Google Scholar 

  19. Byers SL, Payson SJ, Taft RA (2006) Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65(9):1716–1726, S0093-691X(05)00405-X doi: 10.1016/j.theriogenology.2005.09.016 [pii]

    Article  PubMed  Google Scholar 

  20. Quinn P (1995) Enhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphate. J Assist Reprod Genet 12(2):97–105

    Article  CAS  PubMed  Google Scholar 

  21. Adam AA, Takahashi Y, Katagiri S, Nagano M (2004) Effects of oxygen tension in the gas atmosphere during in vitro maturation, in vitro fertilization and in vitro culture on the efficiency of in vitro production of mouse embryos. Jpn J Vet Res 52(2):77–84

    PubMed  Google Scholar 

  22. Dumoulin JC, Vanvuchelen RC, Land JA, Pieters MH, Geraedts JP, Evers JL (1995) Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertil Steril 63(1):115–119

    Article  CAS  PubMed  Google Scholar 

  23. Cohen J, Gilligan A, Esposito W, Schimmel T, Dale B (1997) Ambient air and its potential effects on conception in vitro. Hum Reprod 12(8):1742–1749

    Article  CAS  PubMed  Google Scholar 

  24. Hall J, Gilligan A, Schimmel T, Cecchi M, Cohen J (1998) The origin, effects and control of air pollution in laboratories used for human embryo culture. Hum Reprod 13(Suppl 4):146–155

    Article  PubMed  Google Scholar 

  25. Stringfellow DA, Seidel SM (1998) Manual of the international embryo transfer society: procedural guide and general information for the use of embryo transfer technology, emphasizing sanitary procedures, 3rd edn. International Embryo Transfer Society, Illinois

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Wiles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Low, B.E., Taft, R.A., Wiles, M.V. (2016). Mouse Sperm Cryopreservation and Recovery of Genetically Modified Mice. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics