Skip to main content

Transfection of Human Keratinocytes with Nucleoside-Modified mRNA Encoding CPD-Photolyase to Repair DNA Damage

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

In vitro-synthesized mRNA containing nucleoside modifications has great therapeutical potential to transiently express proteins with physiological importance. One such protein is photolyase which rapidly removes UV-induced DNA damages, but this enzyme is absent in humans. Here, we apply a novel mRNA-based platform to achieve functional nonhuman photolyase production in cultured human keratinocytes. Transfection of nucleoside-modified mRNA encoding photolyase leads to accelerated repair of DNA photolesions in human keratinocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics - developing a new class of drugs. Nat Rev Drug Discov 13:759–780

    Article  CAS  PubMed  Google Scholar 

  2. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  PubMed  Google Scholar 

  3. Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39, e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freeman SE, Hacham H, Gange RW, Maytum DJ, Sutherland JC, Sutherland BM (1989) Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci U S A 86:5605–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pfeifer GP (1997) Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem Photobiol 65:270–283

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell DL (1988) The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol 48:51–57

    Article  CAS  PubMed  Google Scholar 

  8. Sage E (1993) Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol 57:163–174

    Article  CAS  PubMed  Google Scholar 

  9. Sancar A (2008) Structure and function of photolyase and in vivo enzymology: 50th anniversary. J Biol Chem 283:32153–32157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li YF, Kim ST, Sancar A (1993) Evidence for lack of DNA photoreactivating enzyme in humans. Proc Natl Acad Sci U S A 90:4389–4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lehmann AR (1995) Nucleotide excision repair and the link with transcription. Trends Biochem Sci 20:402–405

    Article  CAS  PubMed  Google Scholar 

  12. Dong KK, Damaghi N, Picart SD, Markova NG, Obayashi K, Okano Y, Masaki H, Grether-Beck S, Krutmann J, Smiles KA, Yarosh DB (2008) UV-induced DNA damage initiates release of MMP-1 in human skin. Exp Dermatol 17:1037–1044

    Article  CAS  PubMed  Google Scholar 

  13. Vink AA, Moodycliffe AM, Shreedhar V, Ullrich SE, Roza L, Yarosh DB, Kripke ML (1997) The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers. Proc Natl Acad Sci U S A 94:5255–5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berardesca E, Bertona M, Altabas K, Altabas V, Emanuele E (2012) Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention. Mol Med Rep 5:570–574

    CAS  PubMed  Google Scholar 

  15. Stege H (2001) Effect of xenogenic repair enzymes on photoimmunology and photocarcinogenesis. J Photochem Photobiol B 65:105–108

    Article  CAS  PubMed  Google Scholar 

  16. Stege H, Roza L, Vink AA, Grewe M, Ruzicka T, Grether-Beck S, Krutmann J (2000) Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci U S A 97:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Asahina H, Han Z, Kawanishi M, Kato T Jr, Ayaki H, Todo T, Yagi T, Takebe H, Ikenaga M, Kimura SH (1999) Expression of a mammalian DNA photolyase confers light-dependent repair activity and reduces mutations of UV-irradiated shuttle vectors in xeroderma pigmentosum cells. Mutat Res 435:255–262

    Article  CAS  PubMed  Google Scholar 

  18. Boros G, Miko E, Muramatsu H, Weissman D, Emri E, Rozsa D, Nagy G, Juhasz A, Juhasz I, van der Horst G, Horkay I, Remenyik E, Kariko K, Emri G (2013) Transfection of pseudouridine-modified mRNA encoding CPD-photolyase leads to repair of DNA damage in human keratinocytes: a new approach with future therapeutic potential. J Photochem Photobiol B 129:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pardi N, Muramatsu H, Weissman D, Kariko K (2013) In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol 969:29–42

    Article  CAS  PubMed  Google Scholar 

  20. Weissman D, Pardi N, Muramatsu H, Kariko K (2013) HPLC purification of in vitro transcribed long RNA. Methods Mol Biol 969:43–54

    Article  CAS  PubMed  Google Scholar 

  21. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (grant number R01NS029331 and R42HL87688), the Hungarian Scientific Research Fund (OTKA K105872), and the project of TÁMOP-4.2.2-A-11/1/KONV-2012-0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Remenyik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Boros, G. et al. (2016). Transfection of Human Keratinocytes with Nucleoside-Modified mRNA Encoding CPD-Photolyase to Repair DNA Damage. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics