Skip to main content

Protocols for Developing Novel Chikungunya Virus DNA Vaccines

  • Protocol
  • First Online:
Chikungunya Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1426))

Abstract

To date, there have been several million infections by the Chikungunya virus (CHIKV), a mosquito-transmitted emerging pathogen that is considered to be taxonomically an Old World RNA virus. Although original CHIKV outbreaks were restricted to India, East Asian countries, Northern Italy, and France, a recent sharp rise had been identified in 41 countries or territories in the Caribbean, Central America, South America, and North America. A total of 1,012,347 suspected and 22,579 laboratory-confirmed CHIKV cases have been reported from these areas, which signals an increasing risk to the US mainland. Unlike past epidemics that were usually associated with Ae. aegypti transmission, the Caribbean outbreak was associated with Ae. albopictus transmission as the principal mosquito vector. In addition, the substantial increase in the number of deaths during this epidemic, as well as incidence of neurologic disease, suggests that CHIKV may have become more virulent. Currently, there are no licensed vaccines or therapeutics available for CHIKV or its associated disease pathologies. Therefore, development of new vaccines and therapies that could confer immunity and/or treat clinical symptoms of CHIKV is greatly desired. This chapter describes the use of entirely cutting edge technologies/methodologies developed by our group for the development and evaluation of novel DNA vaccines against CHIKV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo TH, Lum FM, Claser C, Lulla V, Lulla A, Merits A, Renia L, Ng LF (2013) A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice. J Immunol 190(1):259–269. doi:10.4049/jimmunol.1202177

    Article  CAS  PubMed  Google Scholar 

  2. Long KM, Whitmore AC, Ferris MT, Sempowski GD, McGee C, Trollinger B, Gunn B, Heise MT (2013) Dendritic cell immunoreceptor regulates Chikungunya virus pathogenesis in mice. J Virol 87(10):5697–5706. doi:10.1128/JVI.01611-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT (2012) Chikungunya: a re-emerging virus. Lancet 379(9816):662–671. doi:10.1016/S0140-6736(11)60281-X

    Article  PubMed  Google Scholar 

  4. Ross RW (1956) The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg 54(2):177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Her Z, Kam YW, Lin RT, Ng LF (2009) Chikungunya: a bending reality. Microbes Infect 11(14–15):1165–1176. doi:10.1016/j.micinf.2009.09.004

    Article  PubMed  Google Scholar 

  6. Van Bortel W, Dorleans F, Rosine J, Blateau A, Rousset D, Matheus S, Leparc-Goffart I, Flusin O, Prat C, Cesaire R, Najioullah F, Ardillon V, Balleydier E, Carvalho L, Lemaitre A, Noel H, Servas V, Six C, Zurbaran M, Leon L, Guinard A, van den Kerkhof J, Henry M, Fanoy E, Braks M, Reimerink J, Swaan C, Georges R, Brooks L, Freedman J, Sudre B, Zeller H (2014) Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe. Euro Surveill 19(13)

    Google Scholar 

  7. Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8(7):491–500. doi:10.1038/nrmicro2368

    Article  CAS  PubMed  Google Scholar 

  8. Suhrbier A, Jaffar-Bandjee MC, Gasque P (2012) Arthritogenic alphaviruses—an overview. Nat Rev Rheumatol 8(7):420–429. doi:10.1038/nrrheum.2012.64

    Article  CAS  PubMed  Google Scholar 

  9. Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, Ferraro B, Stabenow J, Vijayachari P, Sundaram SG, Muruganandam N, Sarangan G, Srikanth P, Khan AS, Lewis MG, Kim JJ, Sardesai NY, Muthumani K, Weiner DB (2011) A DNA vaccine against Chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis 5(1):e928. doi:10.1371/journal.pntd.0000928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silva LA, Khomandiak S, Ashbrook AW, Weller R, Heise MT, Morrison TE, Dermody TS (2014) A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol 88(5):2385–2397. doi:10.1128/JVI.03116-13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thiboutot MM, Kannan S, Kawalekar OU, Shedlock DJ, Khan AS, Sarangan G, Srikanth P, Weiner DB, Muthumani K (2010) Chikungunya: a potentially emerging epidemic? PLoS Negl Trop Dis 4(4):e623. doi:10.1371/journal.pntd.0000623

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB (2009) Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One 4(6):e5895. doi:10.1371/journal.pone.0005895

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Brehin AC, Cubito N, Despres P, Kunst F, Rey FA, Zeller H, Brisse S (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3(7):e263

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, Despres P, Failloux AB (2007) Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2(11):e1168

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eisen L, Moore CG (2013) Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50(3):467–478

    Article  PubMed  Google Scholar 

  16. Pesko K, Westbrook CJ, Mores CN, Lounibos LP, Reiskind MH (2009) Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to chikungunya virus. J Med Entomol 46(2):395–399

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reiskind MH, Lounibos LP (2013) Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27(4):421–429. doi:10.1111/mve.12000

    Article  CAS  PubMed  Google Scholar 

  18. Gerardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, Lenglet Y, Touret Y, Bouveret A, Grivard P, Le Roux K, Blanc S, Schuffenecker I, Couderc T, Arenzana-Seisdedos F, Lecuit M, Robillard PY (2008) Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion. PLoS Med 5(3):e60. doi:10.1371/journal.pmed.0050060, 07-PLME-RA-1274 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramful D, Carbonnier M, Pasquet M, Bouhmani B, Ghazouani J, Noormahomed T, Beullier G, Attali T, Samperiz S, Fourmaintraux A, Alessandri JL (2007) Mother-to-child transmission of Chikungunya virus infection. Pediatr Infect Dis J 26(9):811–815. doi:10.1097/INF.0b013e3180616d4f

    Article  PubMed  Google Scholar 

  20. Poo YS, Nakaya H, Gardner J, Larcher T, Schroder WA, Le TT, Major LD, Suhrbier A (2014) CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated Chikungunya virus arthritis. J Virol 88(2):6862–6872. doi:10.1128/JVI.03364-13

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hoarau JJ, Gay F, Pelle O, Samri A, Jaffar-Bandjee MC, Gasque P, Autran B (2013) Identical strength of the T cell responses against E2, nsP1 and capsid CHIKV proteins in recovered and chronic patients after the epidemics of 2005–2006 in La Reunion Island. PLoS One 8(12):e84695. doi:10.1371/journal.pone.0084695

    Article  PubMed  PubMed Central  Google Scholar 

  22. Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, Brochard P, Guigand L, Dubreil L, Lebon P, Verrier B, de Lamballerie X, Suhrbier A, Cherel Y, Le Grand R, Roques P (2010) Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120(3):894–906. doi:10.1172/JCI40104, 40104 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lidbury BA, Rulli NE, Suhrbier A, Smith PN, McColl SR, Cunningham AL, Tarkowski A, van Rooijen N, Fraser RJ, Mahalingam S (2008) Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J Infect Dis 197(11):1585–1593. doi:10.1086/587841

    Article  CAS  PubMed  Google Scholar 

  24. Farnon EC, Sejvar JJ, Staples JE (2008) Severe disease manifestations associated with acute chikungunya virus infection. Crit Care Med 36(9):2682–2683. doi:10.1097/CCM.0b013e3181843d94

    Article  PubMed  Google Scholar 

  25. Couderc T, Chretien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffenecker I, Despres P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M (2008) A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4(2):e29

    Article  PubMed  PubMed Central  Google Scholar 

  26. Queyriaux B, Simon F, Grandadam M, Michel R, Tolou H, Boutin JP (2008) Clinical burden of chikungunya virus infection. Lancet Infect Dis 8(1):2–3. doi:10.1016/S1473-3099(07)70294-3

    Article  PubMed  Google Scholar 

  27. Robin S, Ramful D, Le Seach F, Jaffar-Bandjee MC, Rigou G, Alessandri JL (2008) Neurologic manifestations of pediatric chikungunya infection. J Child Neurol 23(9):1028–1035. doi:10.1177/0883073808314151, 0883073808314151 [pii]

    Article  PubMed  Google Scholar 

  28. Simon F, Paule P, Oliver M (2008) Chikungunya virus-induced myopericarditis: toward an increase of dilated cardiomyopathy in countries with epidemics? Am J Trop Med Hyg 78(2):212–213, doi:78/2/212 [pii]

    PubMed  Google Scholar 

  29. Couderc T, Khandoudi N, Grandadam M, Visse C, Gangneux N, Bagot S, Prost JF, Lecuit M (2009) Prophylaxis and therapy for Chikungunya virus infection. J Infect Dis 200(4):516–523. doi:10.1086/600381

    Article  CAS  PubMed  Google Scholar 

  30. Brighton SW (1984) Chloroquine phosphate treatment of chronic Chikungunya arthritis. An open pilot study. S Afr Med J 66(6):217–218

    CAS  PubMed  Google Scholar 

  31. Briolant S, Garin D, Scaramozzino N, Jouan A, Crance JM (2004) In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination. Antiviral Res 61(2):111–117

    Article  CAS  PubMed  Google Scholar 

  32. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA (2008) Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5:33. doi:10.1186/1743-422X-5-33, 1743-422X-5-33 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khan M, Santhosh SR, Tiwari M, Lakshmana Rao PV, Parida M (2010) Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. J Med Virol 82(5):817–824. doi:10.1002/jmv.21663

    Article  CAS  PubMed  Google Scholar 

  34. Ravichandran R, Manian M (2008) Ribavirin therapy for Chikungunya arthritis. J Infect Dev Ctries 2(2):140–142

    Article  CAS  PubMed  Google Scholar 

  35. Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N, Guivel-Benhassine F, Kraxner A, Tschopp J, Higgs S, Michault A, Arenzana-Seisdedos F, Colonna M, Peduto L, Schwartz O, Lecuit M, Albert ML (2010) Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207(2):429–442. doi:10.1084/jem.20090851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smee DF, Alaghamandan HA, Kini GD, Robins RK (1988) Antiviral activity and mode of action of ribavirin 5′-sulfamate against Semliki Forest virus. Antiviral Res 10(6):253–262

    Article  CAS  PubMed  Google Scholar 

  37. Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG, Mangiafico JA (2000) Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg 62(6):681–685

    CAS  PubMed  Google Scholar 

  38. Gorchakov R, Wang E, Leal G, Forrester NL, Plante K, Rossi SL, Partidos CD, Adams AP, Seymour RL, Weger J, Borland EM, Sherman MB, Powers AM, Osorio JE, Weaver SC (2012) Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol 86(11):6084–6096. doi:10.1128/JVI.06449-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hallengard D, Kakoulidou M, Lulla A, Kummerer BM, Johansson DX, Mutso M, Lulla V, Fazakerley JK, Roques P, Le Grand R, Merits A, Liljestrom P (2014) Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol 88(5):2858–2866. doi:10.1128/JVI.03453-13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Noranate N, Takeda N, Chetanachan P, Sittisaman P, A-Nuegoonpipat A, Anantapreecha S (2014) Characterization of chikungunya virus-like particles. PLoS One 9(9):e108169. doi:10.1371/journal.pone.0108169

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brandler S, Ruffie C, Combredet C, Brault JB, Najburg V, Prevost MC, Habel A, Tauber E, Despres P, Tangy F (2013) A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 31(36):3718–3725. doi:10.1016/j.vaccine.2013.05.086

    Article  CAS  PubMed  Google Scholar 

  42. Kumar M, Sudeep AB, Arankalle VA (2012) Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus. Vaccine 30(43):6142–6149. doi:10.1016/j.vaccine.2012.07.072

    Article  CAS  PubMed  Google Scholar 

  43. McClain DJ, Pittman PR, Ramsburg HH, Nelson GO, Rossi CA, Mangiafico JA, Schmaljohn AL, Malinoski FJ (1998) Immunologic interference from sequential administration of live attenuated alphavirus vaccines. J Infect Dis 177(3):634–641

    Article  CAS  PubMed  Google Scholar 

  44. Tiwari M, Parida M, Santhosh SR, Khan M, Dash PK, Rao PV (2009) Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 27(18):2513–2522. doi:10.1016/j.vaccine.2009.02.062, S0264-410X(09)00289-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Wang E, Kim DY, Weaver SC, Frolov I (2011) Chimeric Chikungunya viruses are nonpathogenic in highly sensitive mouse models but efficiently induce a protective immune response. J Virol 85(17):9249–9252. doi:10.1128/JVI.00844-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bao H, Ramanathan AA, Kawalakar O, Sundaram SG, Tingey C, Bian CB, Muruganandam N, Vijayachari P, Sardesai NY, Weiner DB, Ugen KE, Muthumani K (2013) Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine. Viral Immunol 26(1):75–83. doi:10.1089/vim.2012.0061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muthumani K, Lankaraman KM, Laddy DJ, Sundaram SG, Chung CW, Sako E, Wu L, Khan A, Sardesai N, Kim JJ, Vijayachari P, Weiner DB (2008) Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine 26(40):5128–5134. doi:10.1016/j.vaccine.2008.03.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hokey DA, Weiner DB (2006) DNA vaccines for HIV: challenges and opportunities. Springer Semin Immunopathol 28(3):267–279. doi:10.1007/s00281-006-0046-z

    Article  CAS  PubMed  Google Scholar 

  49. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788. doi:10.1038/nrg2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laddy DJ, Yan J, Khan AS, Andersen H, Cohn A, Greenhouse J, Lewis M, Manischewitz J, King LR, Golding H, Draghia-Akli R, Weiner DB (2009) Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus. J Virol 83(9):4624–4630. doi:10.1128/JVI.02335-08, JVI.02335-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muthumani G, Laddy DJ, Sundaram SG, Fagone P, Shedlock DJ, Kannan S, Wu L, Chung CW, Lankaraman KM, Burns J, Muthumani K, Weiner DB (2009) Co-immunization with an optimized plasmid-encoded immune stimulatory interleukin, high-mobility group box 1 protein, results in enhanced interferon-gamma secretion by antigen-specific CD8 T cells. Immunology 128(1 Suppl):e612–e620. doi:10.1111/j.1365-2567.2009.03044.x, IMM3044 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bagarazzi ML, Yan J, Morrow MP, Shen X, Parker RL, Lee JC, Giffear M, Pankhong P, Khan AS, Broderick KE, Knott C, Lin F, Boyer JD, Draghia-Akli R, White CJ, Kim JJ, Weiner DB, Sardesai NY (2012) Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 4(155):155ra138. doi:10.1126/scitranslmed.3004414

    Article  PubMed  PubMed Central  Google Scholar 

  53. Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, Seliga AM, Soule G, Morrow M, Kraynyak KA, Khan AS, Scott DP, Feldmann F, LaCasse R, Meade-White K, Okumura A, Ugen KE, Sardesai NY, Kim JJ, Kobinger G, Feldmann H, Weiner DB (2015) A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 7(301):301ra132. doi:10.1126/scitranslmed.aac7462

    Article  PubMed  PubMed Central  Google Scholar 

  54. Flingai S, Plummer EM, Patel A, Shresta S, Mendoza JM, Broderick KE, Sardesai NY, Muthumani K, Weiner DB (2015) Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Sci Rep 5:12616. doi:10.1038/srep12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muthumani K, Wise MC, Broderick KE, Hutnick N, Goodman J, Flingai S, Yan J, Bian CB, Mendoza J, Tingey C, Wilson C, Wojtak K, Sardesai NY, Weiner DB (2013) HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One 8(12):e84234. doi:10.1371/journal.pone.0084234

    Article  PubMed  PubMed Central  Google Scholar 

  56. Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386(10008):2078–2088. doi:10.1016/S0140-6736(15)00239-1, pii, S0140-6736(15)00239-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Seleeke Flingai and Emma Reuschel of the Weiner laboratory for significant contributions and/or critical reading and editing of these methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kar Muthumani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chung, C., Ugen, K.E., Sardesai, N.Y., Weiner, D.B., Muthumani, K. (2016). Protocols for Developing Novel Chikungunya Virus DNA Vaccines. In: Chu, J., Ang, S. (eds) Chikungunya Virus. Methods in Molecular Biology, vol 1426. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3618-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3618-2_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3616-8

  • Online ISBN: 978-1-4939-3618-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics