Skip to main content

Detecting Apoptosis, Autophagy, and Necrosis

  • Protocol
  • First Online:
Apoptosis Methods in Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

There are many commercially available kits to identify specific types of cell death, but at the present time, there is no simple assay that can distinguish apoptosis, necrosis, and autophagy. Autophagy and apoptosis are highly conserved processes that maintain organism and cellular homeostasis. They are also prime targets for the design of tumor therapeutics. Apoptosis is a highly regulated process involved in removing unwanted or unhealthy cells. Autophagy is a metabolic process, in which proteins and organelles are targeted for degradation in the lysosome. Necrosis is initiated by external factors, such as toxins, infection, or trauma, and results in the unregulated digestion of cell components. We discuss the tools we have developed for a simple protocol for detecting apoptosis or necrosis, as well as a simple technique for detecting autophagy. We discuss the potential pitfalls of the methods, suggest guidelines for designing experiments, and describe step by step protocols to identify apoptotic, necrotic and autophagic cell death of any cell line in response to effector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El-Khattouti A, Selimovic D, Haikel Y et al (2013) Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 6:19

    Google Scholar 

  3. Sperandio S, De Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97:14376–14381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hengartner MO (1997) Cell death. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor, New York

    Google Scholar 

  5. Parone P, Priault M, James D et al (2003) Apoptosis: bombarding the mitochondria. Essays Biochem 39:41–51

    Article  CAS  PubMed  Google Scholar 

  6. Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    Article  PubMed  Google Scholar 

  7. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  8. Singh NP, Mccoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  9. Tone S, Sugimoto K, Tanda K et al (2007) Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res 313:3635–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siegel C, Mccullough LD (2011) NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischaemic cell death? Acta Physiol 203:225–234

    Article  CAS  Google Scholar 

  11. Shah GM, Poirier D, Duchaine C et al (1995) Methods for biochemical study of poly(ADP-ribose) metabolism in vitro and in vivo. Anal Biochem 227:1–13

    Article  CAS  PubMed  Google Scholar 

  12. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    Article  PubMed  Google Scholar 

  13. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3:295–299

    Article  CAS  PubMed  Google Scholar 

  14. Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541

    Article  CAS  PubMed  Google Scholar 

  15. Yorimitsu T, Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16:1593–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mortimore GE, Lardeux BR, Adams CE (1988) Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 263:2506–2512

    CAS  PubMed  Google Scholar 

  17. Cuervo AM, Knecht E, Terlecky SR et al (1995) Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol 269:C1200–C1208

    CAS  PubMed  Google Scholar 

  18. Iwata A, Christianson JC, Bucci M et al (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci U S A 102:13135–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kiffin R, Christian C, Knecht E et al (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mizushima N, Yamamoto A, Matsui M et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  22. Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235

    Article  CAS  PubMed  Google Scholar 

  24. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oeste CL, Seco E, Patton WF et al (2013) Interactions between autophagic and endo-lysosomal markers in endothelial cells. Histochem Cell Biol 139:659–670

    Article  CAS  PubMed  Google Scholar 

  26. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14

    CAS  PubMed  Google Scholar 

  28. Niemann A, Takatsuki A, Elsasser HP (2000) The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem 48:251–258

    Article  CAS  PubMed  Google Scholar 

  29. Chan LL, Shen D, Wilkinson AR et al (2012) A novel image-based cytometry method for autophagy detection in living cells. Autophagy 8:1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi S, Volden P, Timm D et al (2010) Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem 285:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peropadre A, Fernandez Freire P, Herrero O et al (2011) Cellular responses associated with dibucaine-induced phospholipidosis. Chem Res Toxicol 24:185–192

    Article  CAS  PubMed  Google Scholar 

  33. Anderson N, Borlak J (2006) Drug-induced phospholipidosis. FEBS Lett 580:5533–5540

    Article  CAS  PubMed  Google Scholar 

  34. Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99:167–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porter K, Nallathambi J, Lin Y et al (2013) Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis. Autophagy 9:581–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bar J, Cohen-Noyman E, Geiger B et al (2004) Attenuation of the p53 response to DNA damage by high cell density. Oncogene 23:2128–2137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Coleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coleman, J., Liu, R., Wang, K., Kumar, A. (2016). Detecting Apoptosis, Autophagy, and Necrosis. In: Muganda, P. (eds) Apoptosis Methods in Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3588-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3588-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3586-4

  • Online ISBN: 978-1-4939-3588-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics