Skip to main content

Targeted Therapy in Melanoma

  • Chapter
  • First Online:
Genetics of Melanoma

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 954 Accesses

Abstract

Melanoma has the highest mutation rate of all common cancers, and genomic research has accelerated the development of multiple new targeted therapies. The most commonly found mutations in melanoma are BRAF, NRAS, and KIT, and this chapter provides a detailed overview of each gene, their association with clinical features, as well as currently approved and investigational targeted approaches for each of these mutations. Safety profiles and underlying mechanisms of resistance are presented. Lastly, GNAQ/GNA11 mutations, found in up to 80 % of uveal melanoma patients, are detailed, and new insights into the role of the PTEN/PI3K/AKT/mTOR pathway are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Jang S, Atkins MB (2013) Which drug, and when, for patients with BRAF-mutant melanoma? Lancet Oncol 14:e60–e69

    Article  CAS  PubMed  Google Scholar 

  3. Dean E, Lorigan P (2012) Advances in the management of melanoma: targeted therapy, immunotherapy and future directions. Expert Rev Anticancer Ther 12:1437–1448

    Article  CAS  PubMed  Google Scholar 

  4. Mackiewicz-Wysocka M, Zolnierek J, Wysocki PJ (2013) New therapeutic options in systemic treatment of advanced cutaneous melanoma. Expert Opin Investig Drugs 22:181–190

    Article  CAS  PubMed  Google Scholar 

  5. Balch CM, Soong SJ, Atkins MB et al (2004) An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin 54:131–149, quiz 182-4

    Article  PubMed  Google Scholar 

  6. Bedikian AY, Millward M, Pehamberger H et al (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the oblimersen melanoma study group. J Clin Oncol 24:4738–4745

    Article  CAS  PubMed  Google Scholar 

  7. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chapman PB, Einhorn LH, Meyers ML et al (1999) Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol 17:2745–2751

    CAS  PubMed  Google Scholar 

  9. Hauschild A, Grob JJ, Demidov LV et al (2013) An update on BREAK-3, a phase III, randomized trial: dabrafenib versus dacarbazine in patients with BRAF V600E-positive mutation metastatic melanoma J Clin Oncol 31(Suppl):Abstr 9013

    Google Scholar 

  10. Hill GJ 2nd, Krementz ET, Hill HZ (1984) Dimethyl triazeno imidazole carboxamide and combination therapy for melanoma. IV. Late results after complete response to chemotherapy (Central Oncology Group protocols 7130, 7131, and 7131A). Cancer 53:1299–1305

    Article  PubMed  Google Scholar 

  11. Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    CAS  PubMed  Google Scholar 

  12. Schwartzentruber DJ, Lawson DH, Richards JM et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phan GQ, Attia P, Steinberg SM et al (2001) Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 19:3477–3482

    CAS  PubMed  Google Scholar 

  14. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hersh EM, O’Day SJ, Powderly J et al (2011) A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest New Drugs 29:489–498

    Article  CAS  PubMed  Google Scholar 

  16. Weber J, Thompson JA, Hamid O et al (2009) A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res 15:5591–5598

    Article  CAS  PubMed  Google Scholar 

  17. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  18. Cappola AR, Mandel SJ (2013) Molecular testing in thyroid cancer: BRAF mutation status and mortality. JAMA 309:1529–1530

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich S, Glimm H, Andrulis M et al (2012) BRAF inhibition in refractory hairy-cell leukemia. N Engl J Med 366:2038–2040

    Article  PubMed  Google Scholar 

  20. Oikonomou E, Pintzas A (2006) Cancer genetics of sporadic colorectal cancer: BRAF and PI3KCA mutations, their impact on signaling and novel targeted therapies. Anticancer Res 26:1077–1084

    CAS  PubMed  Google Scholar 

  21. Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–319

    Article  CAS  PubMed  Google Scholar 

  22. Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  CAS  PubMed  Google Scholar 

  23. Long GV, Menzies AM, Nagrial AM et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246

    Article  PubMed  Google Scholar 

  24. Menzies AM, Haydu LE, Visintin L et al (2012) Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res 18:3242–3249

    Article  CAS  PubMed  Google Scholar 

  25. Jakob JA, Bassett RL Jr, Ng CS et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118:4014–4023

    Article  CAS  PubMed  Google Scholar 

  26. Greaves WO, Verma S, Patel KP et al (2013) Frequency and spectrum of BRAF mutations in a retrospective, single-institution study of 1112 cases of melanoma. J Mol Diagn 15:220–226

    Article  CAS  PubMed  Google Scholar 

  27. Lovly CM, Dahlman KB, Fohn LE et al (2012) Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One 7:e35309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagle N, Emery C, Berger MF et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klein O, Clements A, Menzies AM et al (2013) BRAF inhibitor activity in V600R metastatic melanoma. Eur J Cancer 49:1073–1079

    Article  CAS  PubMed  Google Scholar 

  30. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  CAS  PubMed  Google Scholar 

  31. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  CAS  PubMed  Google Scholar 

  32. Steelman LS, Abrams SL, Shelton JG et al (2010) Dominant roles of the Raf/MEK/ERK pathway in cell cycle progression, prevention of apoptosis and sensitivity to chemotherapeutic drugs. Cell Cycle 9:1629–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Joseph EW, Pratilas CA, Poulikakos PI et al (2010) The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 107:14903–14908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weber CK, Slupsky JR, Kalmes HA et al (2001) Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61:3595–3598

    CAS  PubMed  Google Scholar 

  35. Rajakulendran T, Sahmi M, Lefrancois M et al (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545

    Article  CAS  PubMed  Google Scholar 

  36. Poulikakos PI, Persaud Y, Janakiraman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoeflich KP, Gray DC, Eby MT et al (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res 66:999–1006

    Article  CAS  PubMed  Google Scholar 

  38. Michaloglou C, Vredeveld LC, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  CAS  PubMed  Google Scholar 

  39. Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    Article  CAS  PubMed  Google Scholar 

  40. Yazdi AS, Palmedo G, Flaig MJ et al (2003) Mutations of the BRAF gene in benign and malignant melanocytic lesions. J Invest Dermatol 121:1160–1162

    Article  CAS  PubMed  Google Scholar 

  41. Dankort D, Curley DP, Cartlidge RA et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee JH, Choi JW, Kim YS (2011) Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol 164:776–784

    Article  CAS  PubMed  Google Scholar 

  43. Curtin JA, Busam K, Pinkel D et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    Article  CAS  PubMed  Google Scholar 

  44. Maat W, Kilic E, Luyten GP et al (2008) Pyrophosphorolysis detects B-RAF mutations in primary uveal melanoma. Invest Ophthalmol Vis Sci 49:23–27

    Article  PubMed  Google Scholar 

  45. Bauer J, Buttner P, Murali R et al (2011) BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res 24:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bucheit AD, Syklawer E, Jakob JA et al (2013) Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patients with metastatic melanoma. Cancer 119(21):3821–3829

    Article  CAS  PubMed  Google Scholar 

  47. Thomas NE (2006) BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res 16:97–103

    Article  CAS  PubMed  Google Scholar 

  48. Ellerhorst JA, Greene VR, Ekmekcioglu S et al (2011) Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res 17:229–235

    Article  CAS  PubMed  Google Scholar 

  49. Moreau S, Saiag P, Aegerter P et al (2012) Prognostic value of BRAF(V(6)(0)(0)) mutations in melanoma patients after resection of metastatic lymph nodes. Ann Surg Oncol 19:4314–4321

    Article  PubMed  Google Scholar 

  50. Sharma A, Trivedi NR, Zimmerman MA et al (2005) Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65:2412–2421

    Article  CAS  PubMed  Google Scholar 

  51. Mangana J, Levesque MP, Karpova MB et al (2012) Sorafenib in melanoma. Expert Opin Investig Drugs 21:557–568

    Article  CAS  PubMed  Google Scholar 

  52. Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  CAS  PubMed  Google Scholar 

  53. Eisen T, Marais R, Affolter A et al (2011) Sorafenib and dacarbazine as first-line therapy for advanced melanoma: phase I and open-label phase II studies. Br J Cancer 105:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eisen T, Ahmad T, Flaherty KT et al (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hauschild A, Agarwala SS, Trefzer U et al (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27:2823–2830

    Article  CAS  PubMed  Google Scholar 

  56. Flaherty KT, Lee SJ, Zhao F et al (2013) Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol 31:373–379

    Article  CAS  PubMed  Google Scholar 

  57. Ott PA, Hamilton A, Min C et al (2010) A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 5:e15588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davies MA, Fox PS, Papadopoulos NE et al (2012) Phase I study of the combination of sorafenib and temsirolimus in patients with metastatic melanoma. Clin Cancer Res 18:1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bollag G, Hirth P, Tsai J et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chapman PB, Hauschild A, Robert C et al (2012) Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with BRAFV600E-mutated melanoma. J Clin Oncol 30(Suppl):Abstr 8502

    Google Scholar 

  63. Gibney GT, Zager JS (2013) Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opin Drug Metab Toxicol 9:893–899

    Article  CAS  PubMed  Google Scholar 

  64. Falchook GS, Long GV, Kurzrock R et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379:1893–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ascierto PA, Minor D, Ribas A et al (2013) Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol 31(26):3205–3211

    Article  CAS  PubMed  Google Scholar 

  66. Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  CAS  PubMed  Google Scholar 

  67. Su F, Bradley WD, Wang Q et al (2012) Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res 72:969–978

    Article  CAS  PubMed  Google Scholar 

  68. Hatzivassiliou G, Song K, Yen I et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435

    Article  CAS  PubMed  Google Scholar 

  69. Yang H, Higgins B, Kolinsky K et al (2010) RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 70:5518–5527

    Article  CAS  PubMed  Google Scholar 

  70. Su F, Viros A, Milagre C et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Long GV, Wilmott JS, Haydu LE et al (2013) Effects of BRAF inhibitors on human melanoma tissue before treatment, early during treatment, and on progression. Pigment Cell Melanoma Res 26:499–508

    Article  CAS  PubMed  Google Scholar 

  72. Zimmer L, Hillen U, Livingstone E et al (2012) Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol 30:2375–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Callahan MK, Rampal R, Harding JJ et al (2012) Progression of RAS-mutant leukemia during RAF inhibitor treatment. N Engl J Med 367:2316–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johannessen CM, Boehm JS, Kim SY et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xing F, Persaud Y, Pratilas CA et al (2012) Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31:446–457

    Article  CAS  PubMed  Google Scholar 

  76. Nathanson KL, Martin AM, Wubbenhorst B et al (2013) Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin Cancer Res 19(17):4868–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trunzer K, Pavlick AC, Schuchter L et al (2013) Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol 31(14):1767–1774

    Article  CAS  PubMed  Google Scholar 

  78. Paraiso KH, Xiang Y, Rebecca VW et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Montagut C, Sharma SV, Shioda T et al (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68:4853–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Straussman R, Morikawa T, Shee K et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. von Euw E, Atefi M, Attar N et al (2012) Antitumor effects of the investigational selective MEK inhibitor TAK733 against cutaneous and uveal melanoma cell lines. Mol Cancer 11:22

    Article  CAS  Google Scholar 

  84. Greger JG, Eastman SD, Zhang V et al (2012) Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 11:909–920

    Article  CAS  PubMed  Google Scholar 

  85. Conrad WH, Swift RD, Biechele TL et al (2012) Regulating the response to targeted MEK inhibition in melanoma: enhancing apoptosis in NRAS- and BRAF-mutant melanoma cells with Wnt/beta-catenin activation. Cell Cycle 11:3724–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lorusso PM, Adjei AA, Varterasian M et al (2005) Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23:5281–5293

    Article  CAS  PubMed  Google Scholar 

  87. LoRusso PM, Krishnamurthi SS, Rinehart JJ et al (2010) Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 16:1924–1937

    Article  CAS  PubMed  Google Scholar 

  88. Rinehart J, Adjei AA, Lorusso PM et al (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22:4456–4462

    Article  CAS  PubMed  Google Scholar 

  89. Brown AP, Carlson TC, Loi CM et al (2007) Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol 59:671–679

    Article  CAS  PubMed  Google Scholar 

  90. Haura EB, Ricart AD, Larson TG et al (2010) A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res 16:2450–2457

    Article  CAS  PubMed  Google Scholar 

  91. Boasberg PD, Redfern CH, Daniels GA et al (2011) Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer. Cancer Chemother Pharmacol 68:547–552

    Article  CAS  PubMed  Google Scholar 

  92. Yeh TC, Marsh V, Bernat BA et al (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13:1576–1583

    Article  CAS  PubMed  Google Scholar 

  93. Haass NK, Sproesser K, Nguyen TK et al (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14:230–239

    Article  CAS  PubMed  Google Scholar 

  94. Adjei AA, Cohen RB, Franklin W et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 26:2139–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kirkwood JM, Bastholt L, Robert C et al (2012) Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res 18:555–567

    Article  CAS  PubMed  Google Scholar 

  96. Banerji U, Camidge DR, Verheul HM et al (2010) The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res 16:1613–1623

    Article  CAS  PubMed  Google Scholar 

  97. Patel SP, Lazar AJ, Papadopoulos NE et al (2013) Clinical responses to selumetinib (AZD6244; ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma. Cancer 119:799–805

    Article  CAS  PubMed  Google Scholar 

  98. Robert C, Dummer R, Gutzmer R et al (2013) Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol 14:733–740

    Article  CAS  PubMed  Google Scholar 

  99. Gilmartin AG, Bleam MR, Groy A et al (2011) GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 17:989–1000

    Article  CAS  PubMed  Google Scholar 

  100. Falchook GS, Lewis KD, Infante JR et al (2012) Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol 13:782–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Infante JR, Fecher LA, Falchook GS et al (2012) Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol 13:773–781

    Article  CAS  PubMed  Google Scholar 

  102. Kim KB, Kefford R, Pavlick AC et al (2013) Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol 31:482–489

    Article  CAS  PubMed  Google Scholar 

  103. Flaherty KT, Robert C, Hersey P et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114

    Article  CAS  PubMed  Google Scholar 

  104. Bendell JPK, Jones S et al (2011) A phase 1 dose-escalation study of MEK inhibitor MEK162 (ARRY-438162) in patients with advanced solid tumors. In: Presented at the AACR-NCI-EORTC international conference on molecular targets and cancer therapeutics, San Francisco, 12–15 Nov 2011

    Google Scholar 

  105. Ascierto PA, Schadendorf D, Berking C et al (2013) MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  106. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gonzalez R, Ribas A, Daud A et al (2012) Phase IB study of vemurafenib in combination with the MEK inhibitor, GDC-0973, in patients (pts) with unresectable or metastatic BRAFV600 mutated melanoma (BRIM7). ESMO 2744

    Google Scholar 

  108. Ronnstrand L (2004) Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci 61:2535–2548

    Article  CAS  PubMed  Google Scholar 

  109. Woodman SE, Davies MA (2010) Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80:568–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Woodman SE, Trent JC, Stemke-Hale K et al (2009) Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther 8:2079–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jiang X, Zhou J, Yuen NK et al (2008) Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res 14:7726–7732

    Article  CAS  PubMed  Google Scholar 

  112. Hodi FS, Friedlander P, Corless CL et al (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051

    Article  CAS  PubMed  Google Scholar 

  113. Lutzky J, Bauer J, Bastian BC (2008) Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21:492–493

    Article  PubMed  Google Scholar 

  114. Satzger I, Kuttler U, Volker B et al (2010) Anal mucosal melanoma with KIT-activating mutation and response to imatinib therapy—case report and review of the literature. Dermatology 220:77–81

    Article  PubMed  Google Scholar 

  115. Ugurel S, Hildenbrand R, Zimpfer A et al (2005) Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer 92:1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wyman K, Atkins MB, Prieto V et al (2006) Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer 106:2005–2011

    Article  CAS  PubMed  Google Scholar 

  117. Kim KB, Eton O, Davis DW et al (2008) Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br J Cancer 99:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kluger HM, Dudek AZ, McCann C et al (2011) A phase 2 trial of dasatinib in advanced melanoma. Cancer 117:2202–2208

    Article  CAS  PubMed  Google Scholar 

  119. Carvajal RD, Antonescu CR, Wolchok JD et al (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guo J, Si L, Kong Y et al (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 29:2904–2909

    Article  CAS  PubMed  Google Scholar 

  121. Cho JH, Kim KM, Kwon M et al (2012) Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Invest New Drugs 30:2008–2014

    Article  CAS  PubMed  Google Scholar 

  122. Hodi FS, Corless CL, Giobbie-Hurder A et al (2013) Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 31:3182–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jaiswal BS, Janakiraman V, Kljavin NM et al (2009) Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors. PLoS One 4:e5717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Devitt B, Liu W, Salemi R et al (2011) Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res 24:666–672

    Article  CAS  PubMed  Google Scholar 

  125. Diaz-Flores E, Shannon K (2007) Targeting oncogenic Ras. Genes Dev 21:1989–1992

    Article  CAS  PubMed  Google Scholar 

  126. Van Raamsdonk CD, Griewank KG, Crosby MB et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199

    Article  PubMed  PubMed Central  Google Scholar 

  127. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    Article  CAS  PubMed  Google Scholar 

  128. Van Raamsdonk CD, Bezrookove V, Green G et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602

    Article  PubMed  CAS  Google Scholar 

  129. Ambrosini G, Pratilas CA, Qin LX et al (2012) Identification of unique MEK-dependent genes in GNAQ mutant uveal melanoma involved in cell growth, tumor cell invasion, and MEK resistance. Clin Cancer Res 18:3552–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carvajal RD, Sosman JA, Quevedo F et al (2013) Phase II study of selumetinib (sel) versus temozolomide (TMZ) in gnaq/Gna11 (Gq/11) mutant (mut) uveal melanoma (UM). J Clin Oncol 31(Suppl):Abstr CRA9003

    Google Scholar 

  131. Fresno Vara JA, Casado E, de Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204

    Article  PubMed  CAS  Google Scholar 

  132. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  133. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177–182

    Article  CAS  PubMed  Google Scholar 

  134. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  135. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  136. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90

    Article  CAS  PubMed  Google Scholar 

  137. Dhawan P, Singh AB, Ellis DL et al (2002) Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 62:7335–7342

    CAS  PubMed  Google Scholar 

  138. Sekulic A, Hudson CC, Homme JL et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    CAS  PubMed  Google Scholar 

  139. Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  140. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  141. Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  CAS  PubMed  Google Scholar 

  142. Sarbassov DD, Ali SM, Sengupta S et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  CAS  PubMed  Google Scholar 

  143. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  144. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416

    Article  CAS  PubMed  Google Scholar 

  145. Russo AE, Torrisi E, Bevelacqua Y et al (2009) Melanoma: molecular pathogenesis and emerging target therapies (Review). Int J Oncol 34:1481–1489

    CAS  PubMed  Google Scholar 

  146. Robertson GP (2005) Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev 24:273–285

    Article  CAS  PubMed  Google Scholar 

  147. Stahl JM, Sharma A, Cheung M et al (2004) Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 64:7002–7010

    Article  CAS  PubMed  Google Scholar 

  148. Lu Y, Lin YZ, LaPushin R et al (1999) The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 18:7034–7045

    Article  CAS  PubMed  Google Scholar 

  149. Tsao H, Zhang X, Benoit E et al (1998) Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 16:3397–3402

    Article  CAS  PubMed  Google Scholar 

  150. Stahl JM, Cheung M, Sharma A et al (2003) Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res 63:2881–2890

    CAS  PubMed  Google Scholar 

  151. Davies MA, Stemke-Hale K, Lin E et al (2009) Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res 15:7538–7546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Curtin JA, Stark MS, Pinkel D et al (2006) PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol 126:1660–1663

    Article  CAS  PubMed  Google Scholar 

  153. Davies MA, Stemke-Hale K, Tellez C et al (2008) A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 99:1265–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Omholt K, Krockel D, Ringborg U et al (2006) Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res 16:197–200

    Article  CAS  PubMed  Google Scholar 

  155. Bandura L, Drukala J, Wolnicka-Glubisz A et al (2005) Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells. Biochem Cell Biol 83:196–211

    Article  CAS  PubMed  Google Scholar 

  156. Keum YS, Jeong WS, Kong AN (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 555:191–202

    Article  CAS  PubMed  Google Scholar 

  157. Sharma A, Sharma AK, Madhunapantula SV et al (2009) Targeting Akt3 signaling in malignant melanoma using isoselenocyanates. Clin Cancer Res 15:1674–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Feng Y, Barile E, De SK et al (2011) Effective inhibition of melanoma by BI-69A11 is mediated by dual targeting of the AKT and NF-kappaB pathways. Pigment Cell Melanoma Res 24:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Van Ummersen L, Binger K, Volkman J et al (2004) A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 10:7450–7456

    Article  PubMed  Google Scholar 

  160. Yap TA, Yan L, Patnaik A et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29:4688–4695

    Article  CAS  PubMed  Google Scholar 

  161. Burris H, Siu L, Infante J et al (2011) Safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of the oral AKT inhibitor GSK2141795 (GSK795) in a phase I first-in-human study. J Clin Oncol 29 (Suppl); Abstr 3003

    Google Scholar 

  162. Atefi M, von Euw E, Attar N et al (2011) Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One 6:e28973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gopal YN, Deng W, Woodman SE et al (2010) Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 70:8736–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mitsiades N, Chew SA, He B et al (2011) Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Invest Ophthalmol Vis Sci 52:7248–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Margolin K, Longmate J, Baratta T et al (2005) CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 104:1045–1048

    Article  CAS  PubMed  Google Scholar 

  166. Rao R, Windschitl H, Allred J et al (2006) Phase II trial of the mTOR inhibitor everolimus (RAD-001) in metastatic melanoma. J Clin Oncol 24, 2006 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 24, No 18S (June 20 Supplement), 2006:8043

    Google Scholar 

  167. Margolin KA, Moon J, Flaherty LE et al (2012) Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clin Cancer Res 18:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hainsworth JD, Infante JR, Spigel DR et al (2010) Bevacizumab and everolimus in the treatment of patients with metastatic melanoma: a phase 2 trial of the Sarah Cannon oncology research consortium. Cancer 116:4122–4129

    Article  CAS  PubMed  Google Scholar 

  169. Deng W, Gopal YN, Scott A et al (2012) Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell Melanoma Res 25:248–258

    Article  CAS  PubMed  Google Scholar 

  170. Hussussian CJ, Struewing JP, Goldstein AM et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8:15–21

    Article  CAS  PubMed  Google Scholar 

  171. Goldstein AM, Chan M, Harland M et al (2007) Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet 44:99–106

    Article  CAS  PubMed  Google Scholar 

  172. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409

    Article  CAS  PubMed  Google Scholar 

  173. Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737

    Article  CAS  PubMed  Google Scholar 

  174. Harbour JW, Luo RX, Dei Santi A et al (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98:859–869

    Article  CAS  PubMed  Google Scholar 

  175. Gast A, Scherer D, Chen B et al (2010) Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer 49:733–745

    Article  CAS  PubMed  Google Scholar 

  176. Joshi KS, Rathos MJ, Joshi RD et al (2007) In vitro antitumor properties of a novel cyclin-dependent kinase inhibitor, p 276–00. Mol Cancer Ther 6:918–925

    Article  CAS  PubMed  Google Scholar 

  177. Joshi KS, Rathos MJ, Mahajan P et al (2007) P 276–00, a novel cyclin-dependent inhibitor induces G1–G2 arrest, shows antitumor activity on cisplatin-resistant cells and significant in vivo efficacy in tumor models. Mol Cancer Ther 6:926–934

    Article  CAS  PubMed  Google Scholar 

  178. Schwartz GK, LoRusso PM, Dickson MA et al (2011) Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br J Cancer 104:1862–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella C. Glitza MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glitza, I.C., Kim, D.W., Chae, Y.K., Kim, K.B. (2016). Targeted Therapy in Melanoma. In: Torres-Cabala, C., Curry, J. (eds) Genetics of Melanoma. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3554-3_11

Download citation

Publish with us

Policies and ethics