Skip to main content

Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells

  • Protocol
  • First Online:
Quantitative Proteomics by Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1410))

Abstract

Lysine (Lys) succinylation is a recently discovered protein posttranslational modification pathway that is evolutionarily conserved from bacteria to mammals. It is regulated by Sirt5, a member of the class III histone deacetylases (HDACs) or the Sirtuins. Recent studies demonstrated that Lys succinylation and Sirt5 are involved in diverse cellular metabolic processes including urea cycle, ammonia transfer, and glucose metabolism. In this chapter, we describe the general protocol to identify Sirt5-regulated Lys succinylation substrates and a computational method to calculate the absolute modification stoichiometries of Lys succinylation sites. The strategy employs Stable Isotope Labeling of Amino acid in Cell culture (SILAC) and the immunoaffinity enrichment of Lys succinylated peptides to identify the Lys succinylation sites that are significantly upregulated in Sirt5 knockout mouse embryonic fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44(45):7342–7372. doi:10.1002/anie.200501023

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6(5):812–819. doi:10.1074/mcp.M700021-MCP200, M700021-MCP200 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282(41):30239–30245. doi:10.1074/jbc.M704409200, M704409200 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028. doi:10.1016/j.cell.2011.08.008, S0092-8674(11)00891-9 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63. doi:10.1038/nchembio.495, nchembio.495 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Colak G, Xie Z, Zhu AY, Dai L, Lu Z, Zhang Y, Wan X, Chen Y, Cha YH, Lin H, Zhao Y, Tan M (2013) Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol Cell Proteomics 12(12):3509–3520. doi:10.1074/mcp.M113.031567, M113.031567 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(12):M111.012658. doi:10.1074/mcp.M111.012658, M111.012658 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, Ro J, Wagner GR, Green MF, Madsen AS, Schmiesing J, Peterson BS, Xu G, Ilkayeva OR, Muehlbauer MJ, Braulke T, Muhlhausen C, Backos DS, Olsen CA, McGuire PJ, Pletcher SD, Lombard DB, Hirschey MD, Zhao Y (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19(4):605–617. doi:10.1016/j.cmet.2014.03.014, S1550-4131(14)00118-1 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, Debernardi A, Buchou T, Rousseaux S, Jin F, Sabari BR, Deng Z, Allis CD, Ren B, Khochbin S, Zhao Y (2014) Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 10(5):365–370. doi:10.1038/nchembio.1497, nchembio.1497 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, Boeke JD, Zhao Y (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11(5):100–107. doi:10.1074/mcp.M111.015875, M111.015875 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hirschey MD, Zhao Y (2015) Metabolic regulation by lysine malonylation, succinylation and glutarylation. Mol Cell Proteomics 14(9):2308–2315. doi:10.1074/mcp.R114.046664, mcp.R114.046664 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809. doi:10.1126/science.1207861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Meijer AJ, Lamers WH, Chamuleau RA (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70(3):701–748

    CAS  PubMed  Google Scholar 

  14. Yefimenko I, Fresquet V, Marco-Marin C, Rubio V, Cervera J (2005) Understanding carbamoyl phosphate synthetase deficiency: impact of clinical mutations on enzyme functionality. J Mol Biol 349(1):127–141. doi:10.1016/j.jmb.2005.03.078, S0022-2836(05)00380-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, Sansone L, Villanova L, Runci A, Pucci B, Morgante E, Fini M, Mai A, Russo MA, Tafani M (2015) SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11(2):253–270. doi:10.1080/15548627.2015.1009778

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618. doi:10.1016/j.molcel.2006.06.026, S1097-2765(06)00454-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Zhang K, Chen Y, Zhang Z, Zhao Y (2009) Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 8(2):900–906. doi:10.1021/pr8005155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930. doi:10.1016/j.molcel.2013.06.001, S1097-2765(13)00438-3 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. doi:10.1126/scisignal.2000475

    Article  PubMed  Google Scholar 

  20. Yang F, Shen Y, Camp DG 2nd, Smith RD (2012) High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 9(2):129–134. doi:10.1586/epr.12.15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511, nbt.1511 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Drs. Yingming Zhao, Timothy Griffin, and Minjia Tan for their critical reading of the manuscript. The work is supported by Minnesota Medical Foundation Grant and Startup funding from the University of Minnesota at Twin Cities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, Y. (2016). Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells. In: Sechi, S. (eds) Quantitative Proteomics by Mass Spectrometry. Methods in Molecular Biology, vol 1410. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3524-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3524-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3522-2

  • Online ISBN: 978-1-4939-3524-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics