Skip to main content

A Bioinformatics Method for the Design of Live Attenuated Virus Vaccine Utilizing Host MicroRNA Response Elements

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

The host microRNA machinery has been employed to control viral replication. To improve safety for live attenuated virus vaccines, the binding sites of the host microRNAs, so-called microRNA response elements (MREs), were incorporated into the virus sequences. These MREs were typically designed for a specific host microRNA and virus sequence with the effectiveness evaluated by experimental trials. Here, we describe a computational flow that can be used to simultaneously design and prioritize the effective MREs in large-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    Article  CAS  Google Scholar 

  2. Nathans R, Chu C-y, Serquina AK et al (2009) Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34:696–709

    Article  CAS  Google Scholar 

  3. Zheng S-q, Li Y-x, Zhang Y et al (2011) MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 89:219–226

    Article  CAS  Google Scholar 

  4. Song L, Liu H, Gao S et al (2010) Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 84:8849–8860

    Article  CAS  Google Scholar 

  5. Otsuka M, Jing Q, Georgel P et al (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27:123–134

    Article  CAS  Google Scholar 

  6. Barnes D, Kunitomi M, Vignuzzi M et al (2008) Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4:239–248

    Article  CAS  Google Scholar 

  7. Perez JT, Pham AM, Lorini MH et al (2009) MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 27:572–576

    Article  CAS  Google Scholar 

  8. Lee T-C, Lin Y-L, Liao J-T et al (2010) Utilizing liver-specific microRNA-122 to modulate replication of dengue virus replicon. Biochem Biophys Res Commun 396:596–601

    Article  CAS  Google Scholar 

  9. Kelly EJ, Hadac EM, Greiner S et al (2008) Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 14:1278–1283

    Article  CAS  Google Scholar 

  10. Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  Google Scholar 

  11. Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  Google Scholar 

  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  13. Enright A, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  Google Scholar 

  14. John B, Enright AJ, Aravin A et al (2004) Human microRNA targets. PLoS Biol 2, e363

    Article  Google Scholar 

  15. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  Google Scholar 

  16. Burnside J, Ouyang M, Anderson A et al (2008) Deep sequencing of chicken microRNAs. BMC Genomics 9:185

    Article  Google Scholar 

  17. Barad O, Meiri E, Avniel A et al (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486–2494

    Article  CAS  Google Scholar 

  18. Williams A, Perry M, Moschos S et al (2007) MicroRNA expression in the aging mouse lung. BMC Genomics 8:172

    Article  Google Scholar 

  19. Fan X, Kurgan L (2015) Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinform 16(5):780–794

    Article  Google Scholar 

  20. Wichadakul D, Mhuantong W, Jongkaewwattana A et al (2012) A computational tool for the design of live attenuated virus vaccine based on microRNA-mediated gene silencing. BMC Genomics 13(Suppl 7):S15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangdao Wichadakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wichadakul, D. (2016). A Bioinformatics Method for the Design of Live Attenuated Virus Vaccine Utilizing Host MicroRNA Response Elements. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_47

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics