Skip to main content

Profiling DNA Methylation and Hydroxymethylation at Retrotransposable Elements

  • Protocol
  • First Online:
Transposons and Retrotransposons

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1400))

Abstract

DNA methylation is a key epigenetic modification controlling the transcriptional activity of mammalian retrotransposable elements. Its oxidation to DNA hydroxymethylation has been linked to DNA demethylation and reactivation of retrotransposons. Here we describe in detail protocols for three methods to measure DNA methylation and hydroxymethylation at specific genomic targets: glucMS-qPCR, and two sequencing approaches (pyrosequencing and high-throughput sequencing) for analyzing bisulfite- and oxidative bisulfite-modified DNA. All three techniques provide absolute measurements of methylation and hydroxymethylation levels at single-base resolution. Differences between the methods are discussed, mainly with respect to throughput and target coverage. These constitute the core techniques that are used in our laboratory for accurately surveying the epigenetics of retrotransposable elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee E, Iskow R, Yang L et al (2012) Landscape of somatic retrotransposition in human cancers. Science 337:967–971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sundaram V, Cheng Y, Ma Z et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24:1963–1976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    CAS  Google Scholar 

  4. Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  CAS  PubMed  Google Scholar 

  5. Nestor C, Ruzov A, Meehan R, Dunican D (2010) Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48:317–319

    Article  CAS  PubMed  Google Scholar 

  6. Kinney SM, Chin HG, Vaisvila R et al (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286:24685–24693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937

    Article  CAS  PubMed  Google Scholar 

  8. Booth MJ, Ost TWB, Beraldi D et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Colella S, Shen L, Baggerly KA et al (2003) Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35:146–150

    CAS  PubMed  Google Scholar 

  10. Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  11. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel R. Branco Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

de la Rica, L., Stanley, J.S., Branco, M.R. (2016). Profiling DNA Methylation and Hydroxymethylation at Retrotransposable Elements. In: Garcia-Pérez, J. (eds) Transposons and Retrotransposons. Methods in Molecular Biology, vol 1400. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3372-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3372-3_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3370-9

  • Online ISBN: 978-1-4939-3372-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics