Skip to main content

Radioiodine-Refractory Thyroid Cancer: Restoring Response to Radioiodine Therapy

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Most cases of thyroid cancer can be treated effectively with total thyroidectomy, in some cases followed by adjuvant radioactive iodine (RAI) therapy. Mortality is primarily associated with metastatic disease, especially when RAI avidity is lost. There have been many efforts to develop therapies to restore the ability of RAI-refractory thyroid cancers to trap iodide and respond to this treatment. Retinoids, peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, histone deacetylase (HDAC) inhibitors, and DNA-demethylating agents have shown some activity to restore RAI uptake in vitro. However, clinical trials with these agents have shown, at best, mixed results. Papillary thyroid cancers (PTC) are associated with mutually exclusive mutations of oncogenes encoding effectors of the mitogen-activated protein kinase (MAPK) signaling pathway. The activated BRAFv600E mutation is the most frequent genetic alteration in PTC and confers patients with a poor prognosis. Inhibitors of the MAPK pathway, such as MEK inhibitors, have been shown to restore sodium-iodine symporter (NIS) expression and iodide uptake in vitro and in mouse models and are currently undergoing clinical trials with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.

    Article  CAS  PubMed  Google Scholar 

  2. Evans TR, Kaye SB. Retinoids: present role and future potential. Br J Cancer. 1999;80(1–2):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith MA, Anderson B. Where to next with retinoids for cancer therapy? Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7(10):2955–7.

    CAS  Google Scholar 

  4. Elisei R, Vivaldi A, Agate L, et al. All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor beta messenger ribonucleic acid expressing thyroid cancer cell lines but does not reinduce the expression of thyroid-specific genes. J Clin Endocrinol Metab. 2005;90(4):2403–11.

    Article  CAS  PubMed  Google Scholar 

  5. Van Herle AJ, Agatep ML, Padua 3rd DN, et al. Effects of 13 cis-retinoic acid on growth and differentiation of human follicular carcinoma cells (UCLA R0 82 W-1) in vitro. J Clin Endocrinol Metab. 1990;71(3):755–63.

    Article  PubMed  Google Scholar 

  6. Schreck R, Schnieders F, Schmutzler C, Kohrle J. Retinoids stimulate type I iodothyronine 5′-deiodinase activity in human follicular thyroid carcinoma cell lines. J Clin Endocrinol Metab. 1994;79(3):791–8.

    CAS  PubMed  Google Scholar 

  7. Kurebayashi J, Tanaka K, Otsuki T, et al. All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab. 2000;85(8):2889–96.

    CAS  PubMed  Google Scholar 

  8. Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun. 1997;240(3):832–8.

    Article  CAS  PubMed  Google Scholar 

  9. Schweppe RE, Klopper JP, Korch C, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93(11):4331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grunwald F, Pakos E, Bender H, et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J Nucl Med Off Publ Soc Nucl Med. 1998;39(9):1555–8.

    CAS  Google Scholar 

  11. Grunwald F, Menzel C, Bender H, et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med Off Publ Soc Nucl Med. 1998;39(11):1903–6.

    CAS  Google Scholar 

  12. Simon D, Koehrle J, Reiners C, et al. Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma. World J Surg. 1998;22(6):569–74.

    Article  CAS  PubMed  Google Scholar 

  13. Schmutzler C, Kohrle J. Retinoic acid redifferentiation therapy for thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2000;10(5):393–406.

    Article  CAS  Google Scholar 

  14. Boerner AR, Petrich T, Weckesser E, et al. Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  15. Gruning T, Tiepolt C, Zophel K, Bredow J, Kropp J, Franke WG. Retinoic acid for redifferentiation of thyroid cancer – does it hold its promise? Eur J Endocrinol Eur Fed Endocr Soc. 2003;148(4):395–402.

    Article  CAS  Google Scholar 

  16. Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K, et al. 13-cis-retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res. 2009;2(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coelho SM, Vaisman F, Buescu A, Mello RC, Carvalho DP, Vaisman M. Follow-up of patients treated with retinoic acid for the control of radioiodine non-responsive advanced thyroid carcinoma. Braz J Med Biol Res Rev Bras Pesquisas Med Biol Soc Bras Biofisica. 2011;44(1):73–7.

    CAS  Google Scholar 

  18. Corton JC, Lapinskas PJ, Gonzalez FJ. Central role of PPARalpha in the mechanism of action of hepatocarcinogenic peroxisome proliferators. Mutat Res. 2000;448(2):139–51.

    Article  CAS  PubMed  Google Scholar 

  19. Lebovitz HE. Rationale for and role of thiazolidinediones in type 2 diabetes mellitus. Am J Cardiol. 2002;90(5A):34G–41.

    Article  CAS  PubMed  Google Scholar 

  20. Koeffler HP. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(1):1–9.

    CAS  Google Scholar 

  21. Park JW, Zarnegar R, Kanauchi H, et al. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid Off J Am Thyroid Assoc. 2005;15(3):222–31.

    Article  CAS  Google Scholar 

  22. Frohlich E, Machicao F, Wahl R. Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr Relat Cancer. 2005;12(2):291–303.

    Article  PubMed  Google Scholar 

  23. Philips JC, Petite C, Willi JP, Buchegger F, Meier CA. Effect of peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, on dedifferentiated thyroid cancers. Nucl Med Commun. 2004;25(12):1183–6.

    Article  CAS  PubMed  Google Scholar 

  24. Marques AR, Espadinha C, Frias MJ, et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)gamma in PAX8/PPARgamma-negative thyroid tumours. Br J Cancer. 2004;91(4):732–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sahin M, Allard BL, Yates M, et al. PPARgamma staining as a surrogate for PAX8/PPARgamma fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J Clin Endocrinol Metab. 2005;90(1):463–8.

    Article  CAS  PubMed  Google Scholar 

  26. Karger S, Berger K, Eszlinger M, et al. Evaluation of peroxisome proliferator-activated receptor-gamma expression in benign and malignant thyroid pathologies. Thyroid Off J Am Thyroid Assoc. 2005;15(9):997–1003.

    Article  CAS  Google Scholar 

  27. Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289(5483):1357–60.

    Article  CAS  PubMed  Google Scholar 

  28. Dobson ME, Diallo-Krou E, Grachtchouk V, et al. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8-PPARgamma fusion protein thyroid carcinoma. Endocrinology. 2011;152(11):4455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86(5):2170–7.

    CAS  PubMed  Google Scholar 

  30. Martelli ML, Iuliano R, Le Pera I, et al. Inhibitory effects of peroxisome proliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab. 2002;87(10):4728–35.

    Article  CAS  PubMed  Google Scholar 

  31. Kebebew E, Lindsay S, Clark OH, Woeber KA, Hawkins R, Greenspan FS. Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2009;19(9):953–6.

    Article  CAS  Google Scholar 

  32. Tontonoz P, Singer S, Forman BM, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci U S A. 1997;94(1):237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kitazono M, Robey R, Zhan Z, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(−) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86(7):3430–5.

    CAS  PubMed  Google Scholar 

  34. Imanishi R, Ohtsuru A, Iwamatsu M, et al. A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy. J Clin Endocrinol Metab. 2002;87(10):4821–4.

    Article  CAS  PubMed  Google Scholar 

  35. Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol Off J Am Society Clin Oncol. 2009;27(23):3794–801.

    Article  CAS  Google Scholar 

  36. Woyach JA, Kloos RT, Ringel MD, et al. Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab. 2009;94(1):164–70.

    Article  CAS  PubMed  Google Scholar 

  37. Kondo T, Nakazawa T, Ma D, et al. Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. Lab Invest J Tech Methods Pathol. 2009;89(7):791–9.

    Article  CAS  Google Scholar 

  38. Kusakabe T, Kawaguchi A, Hoshi N, Kawaguchi R, Hoshi S, Kimura S. Thyroid-specific enhancer-binding protein/NKX2.1 is required for the maintenance of ordered architecture and function of the differentiated thyroid. Mol Endocrinol. 2006;20(8):1796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xing M, Tokumaru Y, Wu G, Westra WB, Ladenson PW, Sidransky D. Hypermethylation of the Pendred syndrome gene SLC26A4 is an early event in thyroid tumorigenesis. Cancer Res. 2003;63(9):2312–5.

    CAS  PubMed  Google Scholar 

  40. Venkataraman GM, Yatin M, Marcinek R, Ain KB. Restoration of iodide uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/I-symporter gene methylation status. J Clin Endocrinol Metab. 1999;84(7):2449–57.

    CAS  PubMed  Google Scholar 

  41. Li W, Venkataraman GM, Ain KB. Protein synthesis inhibitors, in synergy with 5-azacytidine, restore sodium/iodide symporter gene expression in human thyroid adenoma cell line, KAK-1, suggesting trans-active transcriptional repressor. J Clin Endocrinol Metab. 2007;92(3):1080–7.

    Article  CAS  PubMed  Google Scholar 

  42. Vivaldi A, Miasaki FY, Ciampi R, et al. Re-differentiation of thyroid carcinoma cell lines treated with 5-Aza-2′-deoxycytidine and retinoic acid. Mol Cell Endocrinol. 2009;307(1–2):142–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kolbert KS, Pentlow KS, Pearson JR, et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med Off Publ Soc Nuclear Med. 2007;48(1):143–9.

    CAS  Google Scholar 

  44. Van Nostrand D, Khorjekar GR, O’Neil J, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med Off Publ Soc Nucl Med. 2012;53(3):359–62.

    Google Scholar 

  45. Knauf JA, Kuroda H, Basu S, Fagin JA. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene. 2003;22(28):4406–12.

    Article  CAS  PubMed  Google Scholar 

  46. Mitsutake N, Knauf JA, Mitsutake S, Mesa Jr C, Zhang L, Fagin JA. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res. 2005;65(6):2465–73.

    Article  CAS  PubMed  Google Scholar 

  47. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88(11):5399–404.

    Article  CAS  PubMed  Google Scholar 

  48. Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6373–9.

    Article  CAS  PubMed  Google Scholar 

  49. Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93(10):3943–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Durante C, Puxeddu E, Ferretti E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92(7):2840–3.

    Article  CAS  PubMed  Google Scholar 

  52. Knauf JA, Ouyang B, Croyle M, Kimura E, Fagin JA. Acute expression of RET/PTC induces isozyme-specific activation and subsequent downregulation of PKCepsilon in PCCL3 thyroid cells. Oncogene. 2003;22(44):6830–8.

    Article  CAS  PubMed  Google Scholar 

  53. Liu D, Liu Z, Jiang D, Dackiw AP, Xing M. Inhibitory effects of the mitogen-activated protein kinase kinase inhibitor CI-1040 on the proliferation and tumor growth of thyroid cancer cells with BRAF or RAS mutations. J Clin Endocrinol Metab. 2007;92(12):4686–95.

    Article  CAS  PubMed  Google Scholar 

  54. Costamagna E, Garcia B, Santisteban P. The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-beta repression of the sodium/iodide symporter gene. J Biol Chem. 2004;279(5):3439–46.

    Article  CAS  PubMed  Google Scholar 

  55. Chakravarty D, Santos E, Ryder M, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, Pentlow KS, Zanzonico PB, Haque S, Gavane S, Ghossein RA, Ricarte-Filho JC, Dominguez JM, Shen R, Tuttle RM, Larson SM, Fagin JA. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N Engl J Med 2013;368:623–32.

    Google Scholar 

  57. Oh SW, Moon SH, Park do J, et al. Combined therapy with 131I and retinoic acid in Korean patients with radioiodine-refractory papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38(10):1798–805.

    Article  CAS  PubMed  Google Scholar 

  58. Kim WG, Kim EY, Kim TY, et al. Redifferentiation therapy with 13-cis retinoic acids in radioiodine-resistant thyroid cancer. Endocr J. 2009;56(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  59. Short SC, Suovuori A, Cook G, Vivian G, Harmer C. A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol (R Coll Radiol). 2004;16(8):569–74.

    Article  CAS  Google Scholar 

  60. Simon D, Korber C, Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging. 2002;29(6):775–82.

    Article  CAS  PubMed  Google Scholar 

  61. Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid Off J Am Thyroid Assoc. 2008;18(7):697–704.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Fagin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fish, S.A., Fagin, J.A. (2016). Radioiodine-Refractory Thyroid Cancer: Restoring Response to Radioiodine Therapy. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_68

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics