Skip to main content

Radioiodine Dosimetry with Recombinant Human Thyrotropin

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Although radioactive iodine (RAI) has been an essential tool in the management of thyroid cancer for more than 60 years, there continues to be a lack of scientific rigor regarding the optimal choice of administered activity for individual patients. Often, activities of 30–75 mCi are administered for RAI remnant ablation, 100–150 mCi for adjuvant therapy in patients at significant risk of having microscopic residual disease, while activities ranging from 150 to 250 mCi are usually reserved for treatment of known metastatic disease. In most cases, the activity selected is based on an empiric regimen without knowledge of the rate of RAI clearance or specific lesional dosimetry for that individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.

    CAS  PubMed  Google Scholar 

  2. Furhang EE, Larson SM, Buranapong P, Humm JL. Thyroid cancer dosimetry using clearance fitting. J Nucl Med. 1999;40(1):131–6.

    CAS  PubMed  Google Scholar 

  3. Leeper RD. The effect of 131 I therapy on survival of patients with metastatic papillary or follicular thyroid carcinoma. J Clin Endocrinol Metab. 1973;36(6):1143–52.

    Article  CAS  PubMed  Google Scholar 

  4. Robbins RJ, Larson SM, Sinha N, et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med. 2002;43(11):1482–8.

    CAS  PubMed  Google Scholar 

  5. Rall JE, Alpers JB, Lewallen CG, Sonenberg M, Berman M, Rawson RW. Radiation pneumonitis and fibrosis: a complication of radioiodine treatment of pulmonary metastases from cancer of the thyroid. J Clin Endocrinol Metab. 1957;17(11):1263–76.

    Article  CAS  PubMed  Google Scholar 

  6. Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44(3):451–6.

    CAS  PubMed  Google Scholar 

  7. Duntas LH, Cooper DS. Review on the occasion of a decade of recombinant human TSH: prospects and novel uses. Thyroid. 2008;18(5):509–16.

    Article  CAS  PubMed  Google Scholar 

  8. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Mete M, Jonklaas J, Wartofsky L. Potential use of recombinant human thyrotropin in the treatment of distant metastases in patients with differentiated thyroid cancer. Endocr Pract. 2012;27:1–26.

    Google Scholar 

  9. Luster M, Lippi F, Jarzab B, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  10. Robbins RJ, Robbins AK. Clinical review 156: recombinant human thyrotropin and thyroid cancer management. J Clin Endocrinol Metab. 2003;88(5):1933–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sabra M, Tuttle RM. Recombinant human TSH to stimulate 131I uptake for remnant ablation and adjuvant therapy. Endocr Pract. 2012;27:1–25.

    Google Scholar 

  12. Hugo J, Robenshtok E, Grewal R, Larson S, Tuttle RM. Recombinant human thyroid stimulating hormone-assisted radioactive iodine remnant ablation in thyroid cancer patients at intermediate to high risk of recurrence. Thyroid. 2012;22:1007–15.

    Article  CAS  PubMed  Google Scholar 

  13. Tuttle RM, Brokhin M, Omry G, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008;49(5):764–70.

    Article  PubMed  Google Scholar 

  14. Tuttle RM, Lopez N, Leboeuf R, et al. Radioactive iodine administered for thyroid remnant ablation following recombinant human thyroid stimulating hormone preparation also has an important adjuvant therapy function. Thyroid. 2010;20(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  15. Tuttle RM, Tala H, Shah J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new american thyroid association staging system. Thyroid. 2010;20(12):1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Mete M, Jonklaas J, Wartofsky L. Radioiodine treatment of metastatic thyroid cancer: relative efficacy and side effect profile of preparation by thyroid hormone withdrawal versus recombinant human thyrotropin. Thyroid. 2012;22:310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robbins RJ, Driedger A, Magner J. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid. 2006;16(11):1121–30.

    Article  CAS  PubMed  Google Scholar 

  18. Tala H, Robbins R, Fagin JA, Larson SM, Tuttle RM. Five-year survival is similar in thyroid cancer patients with distant metastases prepared for radioactive iodine therapy with either thyroid hormone withdrawal or recombinant human TSH. J Clin Endocrinol Metab. 2011;96(7):2105–11.

    Article  CAS  PubMed  Google Scholar 

  19. Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luster M, Hanscheid H, Freudenberg LS, Verburg FA. Radioiodine therapy of metastatic lesions of differentiated thyroid cancer. J Endocrinol Invest. 2012;35(6 Suppl):21–9.

    CAS  PubMed  Google Scholar 

  21. Sgouros G, Kolbert KS, Sheikh A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 2004;45(8):1366–72.

    CAS  PubMed  Google Scholar 

  22. Meier CA, Braverman LE, Ebner SA, et al. Diagnostic use of recombinant human thyrotropin in patients with thyroid carcinoma (phase I/II study). J Clin Endocrinol Metab. 1994;78(1):188–96.

    CAS  PubMed  Google Scholar 

  23. Remy H, Borget I, Leboulleux S, et al. 131I effective half-life and dosimetry in thyroid cancer patients. J Nucl Med. 2008;49(9):1445–50.

    Article  CAS  PubMed  Google Scholar 

  24. Luster M, Sherman SI, Skarulis MC, et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2003;30(10):1371–7.

    Article  CAS  PubMed  Google Scholar 

  25. Chiesa C, Castellani MR, Vellani C, et al. Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53(5):546–61.

    CAS  PubMed  Google Scholar 

  26. Hanscheid H, Lassmann M, Luster M, et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med. 2006;47(4):648–54.

    PubMed  Google Scholar 

  27. Hartung-Knemeyer V, Nagarajah J, Jentzen W, et al. Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124-iodine: predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of TSH stimulation and number of preceding radioiodine therapies. Ann Nucl Med. 2012;26(9):723–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bianchi L, Baroli A, Lomuscio G, et al. Dosimetry in the therapy of metastatic differentiated thyroid cancer administering high 131I activity: the experience of Busto Arsizio Hospital (Italy). Q J Nucl Med Mol Imaging. 2012;56(6):515–21.

    CAS  PubMed  Google Scholar 

  29. de Keizer B, Hoekstra A, Konijnenberg MW, et al. Bone marrow dosimetry and safety of high 131I activities given after recombinant human thyroid-stimulating hormone to treat metastatic differentiated thyroid cancer. J Nucl Med. 2004;45(9):1549–54.

    PubMed  Google Scholar 

  30. Pacini F, Molinaro E, Castagna MG, et al. Ablation of thyroid residues with 30 mCi (131)I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab. 2002;87(9):4063–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lassmann M, Luster M, Hanscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med. 2004;45(4):619–25.

    PubMed  Google Scholar 

  32. Haugen BR, Pacini F, Reiners C, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84(11):3877–85.

    CAS  PubMed  Google Scholar 

  33. Hung GU, Ho M, Kao CH. Faster radioiodine washout in the treatment of pulmonary metastases of papillary thyroid cancer prepared with recombinant human thyroid-stimulating hormone. Clin Nucl Med. 2009;34(5):316–7.

    Article  PubMed  Google Scholar 

  34. Taieb D, Jacob T, Zotian E, Mundler O. Lack of efficacy of recombinant human thyrotropin versus thyroid hormone withdrawal for radioiodine therapy imaging in a patient with differentiated thyroid carcinoma lung metastases. Thyroid. 2004;14(6):465–7.

    Article  CAS  PubMed  Google Scholar 

  35. Van Nostrand D, Khorjekar GR, O'Neil J, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med. 2012;53(3):359–62.

    Article  PubMed  Google Scholar 

  36. Erdi YE, Macapinlac H, Larson SM, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging Off J Ins Clin PET. 1999;2(1):41–6.

    Article  Google Scholar 

  37. Pettinato C, Monari F, Nanni C, et al. Usefulness of 124I PET/CT imaging to predict absorbed doses in patients affected by metastatic thyroid cancer and treated with 131I. Q J Nucl Med Mol Imaging. 2012;56(6):509–14.

    CAS  PubMed  Google Scholar 

  38. Tuttle M, Robbins R, Larson SM, Strauss HW. Challenging cases in thyroid cancer: a multidisciplinary approach. Eur J Nucl Med Mol Imaging. 2004;31(4):605–12.

    Article  PubMed  Google Scholar 

  39. Freudenberg LS, Jentzen W, Petrich T, et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging. 2010;37(12):2267–76.

    Article  CAS  PubMed  Google Scholar 

  40. Potzi C, Moameni A, Karanikas G, et al. Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients. Clin Endocrinol (Oxf). 2006;65(4):519–23.

    Article  Google Scholar 

  41. de Keizer B, Brans B, Hoekstra A, et al. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur J Nucl Med Mol Imaging. 2003;30(3):367–73.

    Article  PubMed  Google Scholar 

  42. Maxon HR, Thomas SR, Hertzberg VS, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309(16):937–41.

    Article  CAS  PubMed  Google Scholar 

  43. Loffler M, Weckesser M, Franzius C, Kies P, Schober O. Iodine excretion during stimulation with rhTSH in differentiated thyroid carcinoma. Nuklearmedizin. 2003;42(6):240–3.

    CAS  PubMed  Google Scholar 

  44. Park 2nd JT, Hennessey JV. Two-week low iodine diet is necessary for adequate outpatient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid. 2004;14(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  45. Tala Jury HP, Castagna MG, Fioravanti C, Cipri C, Brianzoni E, Pacini F. Lack of association between urinary iodine excretion and successful thyroid ablation in thyroid cancer patients. J Clin Endocrinol Metab. 2010;95(1):230–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Michael Tuttle MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuttle, R.M., Grewal, R.K., Robbins, R.J. (2016). Radioiodine Dosimetry with Recombinant Human Thyrotropin. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_60

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics