Skip to main content

Thyroid Hormone Therapy and Thyrotropin Suppression

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Levothyroxine (L-T4) is arguably the most prescribed medication in the United States, with its most common therapeutic indication being for hypothyroidism due to chronic thyroiditis or Hashimoto’s disease. Such patients are candidates for so-called replacement dosage, with the administered dosage of L-T4 titrated to a target thyrotropin (TSH) level within the normal reference range of 0.4–3.0 mU/L. Patients with thyroid cancer who have had near-total to total thyroidectomy and have suspected residual disease are usually candidates for suppressive levothyroxine dosage, which is so-called because the aim of therapy is to give a slightly supraphysiologic dosage of thyroxine to suppress TSH. The rationale for suppressive therapy is based on studies indicating that TSH stimulation enhances tumor growth, TSH serving as a growth factor or mitogen for thyroid malignancies with observations of more rapid tumor growth seen clinically after thyroxine withdrawal. The growth-promoting property of TSH is presumed to be from the presence of TSH receptors on thyroid cancer cells; however, non-TSH receptor-mediated growth is certainly a property of undifferentiated thyroid cancers. In patients presenting with a thyroid nodule, the likelihood that the nodule may be malignant correlates directly to the level of serum TSH, and thyroid cancer patients with elevated TSH levels may be more likely to have more advanced disease or evidence of extrathyroidal extension at time of presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biondi B, Wartofsky L. Treatment with Thyroid Hormone. Endocrine Reviews, published ahead of print: doi:10/1210/er.2013-1083; 2014;35:433–512.

    Google Scholar 

  2. Brabant G. Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metab. 2008;93:1167–9.

    Article  CAS  PubMed  Google Scholar 

  3. Carayon P, Thomnas-Morvan C, Castan E, Tubiana M. Human thyroid cancer: membrane thyrotropin binding and adenylate cyclase activity. J Clin Endocrinol Metab. 1980;51:915–20.

    Article  CAS  PubMed  Google Scholar 

  4. Derwahl M, Broecker M, Kraiem Z. Thyrotropin may not be the dominant growth factor in benign and malignant thyroid nodules. J Clin Endocrinol Metab. 1999;84:829–34.

    CAS  PubMed  Google Scholar 

  5. Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab. 2006;91:4295–301.

    Article  CAS  PubMed  Google Scholar 

  6. Jin J, Machekano R, McHenry CR. The utility of preoperative serum thyroid-stimulating hormone level for predicting malignant nodular thyroid disease. Am J Surg. 2010;199:294–7.

    Article  CAS  PubMed  Google Scholar 

  7. Jonklaas J, Nsouli-Maktabi H, Soldin SJ. Endogenous thyrotropin and triiodothyronine concentrations in individuals with thyroid cancer. Thyroid. 2008;18:943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fiore E, Rago T, Provenzale MA, et al. Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a predictive role. Endocr-Relat Cancer. 2009;16:1251–60.

    Article  CAS  PubMed  Google Scholar 

  9. Fiore E, Vitti P. Serum TSH and risk of papillary thyroid cancer in nodular thyroid disease. J Clin Endocrinol Metab. 2012;97:1134–45.

    Article  CAS  PubMed  Google Scholar 

  10. McLeod DS, Watters KF, Carpenter AD, Ladenson PW, Cooper DS, Ding EL. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab. 2012;97:2682–92.

    Article  CAS  PubMed  Google Scholar 

  11. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, Chen H. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab. 2008;93:809–14.

    Article  CAS  PubMed  Google Scholar 

  12. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  13. Pujol P, Daures J-P, Nsakala N, et al. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab. 1996;81:4318–22.

    CAS  PubMed  Google Scholar 

  14. Cooper DS, Specker B, Ho M, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid. 1998;9:737–44.

    Article  Google Scholar 

  15. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16:1229–42.

    Article  PubMed  Google Scholar 

  16. Hovens GC, Stokkel MP, Kievit J, et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92:2610–5.

    Article  CAS  PubMed  Google Scholar 

  17. Diessl S, Holzberger B, Mader U, Grelle I, Smit JW, Buck AK, Reiners C, Verburg FA. Impact of moderate vs. Stringent TSH suppression on survival in differentiated thyroid carcinoma. Clin Endocrinol. 2012;76:586–92.

    Article  CAS  Google Scholar 

  18. National Comprehensive Cancer Network (NCCN). Thyroid carcinoma: clinical practice guidelines 2013. J Natl Compr Cancer Netw. 2013;3:404–57.

    Google Scholar 

  19. Tuttle RM, Ball DW, Byrd D, et al. National Comprehensive Cancer Network (NCCN) thyroid carcinoma: clinical practice guidelines, version 3.2011. J Natl Compr Cancer Netw. 2010;8:1228–74.

    Google Scholar 

  20. British Thyroid Association. Guidelines for the management of differentiated thyroid cancer in adults. Available at: www.british-thyroidassociation.org/guidelines.htm, 2002.

  21. Sugitani I, Fujimoto Y. Does postoperative thyrotropin suppressive therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial. J Clin Endocrinol Metab. 2010;95:4576–83.

    Article  CAS  PubMed  Google Scholar 

  22. Hoang TD, Olsen CH, Mai VQ, Clyde PW, Shakir MK. Desiccated thyroid extract compared with levothyroxine in the treatment of hypothyroidism: a randomized double-blind, crossover study. J Clin Endocrinol Metab. 2013;98:1982–90.

    Article  CAS  PubMed  Google Scholar 

  23. Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med. 1994;331:1249–52.

    Article  CAS  PubMed  Google Scholar 

  24. Parle JV, Maisonneuve P, Sheppard MC, et al. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet. 2001;358:861–5.

    Article  CAS  PubMed  Google Scholar 

  25. Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res. 2004;59:31–50.

    Article  CAS  PubMed  Google Scholar 

  26. Biondi B, Palmieri EA, Lombardi G, Fazio S. Effects of subclinical thyroid dysfunction on the heart. Ann Intern Med. 2002;137:904–14.

    Article  PubMed  Google Scholar 

  27. Shargorodsky M, Serov S, Gavish D, et al. Long-term thyrotropin-suppressive therapy with levothyroxine impairs small and large artery elasticity and increases left ventricular mass in patients with thyroid carcinoma. Thyroid. 2006;16:381–6.

    Article  CAS  PubMed  Google Scholar 

  28. Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 2010;20:135–46.

    Article  CAS  PubMed  Google Scholar 

  29. Stathatos N, Wartofsky L. Effects of thyroid hormone on bone. Clin Rev Bone Miner Metab. 2004;2:135–50.

    Article  CAS  Google Scholar 

  30. Mikosch P, Obermayer-Pietsch B, Jost R, et al. Bone metabolism in patients with differentiated thyroid carcinoma receiving suppressive levothyroxine treatment. Thyroid. 2003;13:347–56.

    Article  CAS  PubMed  Google Scholar 

  31. Chen CH, Chen JF, Yang B, Liu RT, Tung SC, Chien WY, et al. Bone mineral density in women receiving thyroxine suppressive therapy for differentiated thyroid carcinoma. J Formos Med Assoc. 2004;103:442–7.

    PubMed  Google Scholar 

  32. Katz M, Rosen DL, Wartofsky L. Issues in bioequivalence and therapeutic equivalence of levothyroxine products. US Pharm. 2003;9(Suppl):2–14.

    Google Scholar 

  33. Wartofsky L. Levothyroxine: therapeutic use and regulatory issues related to bioequivalence. Expert Opin Pharmacother. 2002;3:727–32.

    Article  CAS  PubMed  Google Scholar 

  34. Thyroid Foundation of America. Advice to patients from the thyroid foundation of America. Thyroid. 2004;14:487.

    Article  Google Scholar 

  35. American Thyroid Association, Endocrine Society, American Association of Clinical Endocrinologists. Joint statement on the U.S. Food and Drug Administration’s decision regarding bioequivalence of levothyroxine sodium. Thyroid. 2004;14:486.

    Article  Google Scholar 

  36. American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer, Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Google Scholar 

  37. AACE/AAES Medical/Surgical guidelines for clinical practice: management of thyroid carcinoma. Endocr Pract. 2001;7:1–19.

    Google Scholar 

  38. Singer PA, Cooper DA, Daniels GH, et al. Treatment guidelines for patients with thyroid nodules and well differentiated thyroid cancer. Arch Intern Med. 1996;156:2165–72.

    Article  CAS  PubMed  Google Scholar 

  39. Cooper DS. Combined T4 and T3 therapy—back to the drawing board. JAMA. 2003;290:3002–4.

    Article  CAS  PubMed  Google Scholar 

  40. Kaplan MM, Sarne DH, Schneider AB. Editorial: In search of the impossible dream? Thyroid hormone replacement therapy that treats all symptoms in all hypothyroid patients. J Clin Endocrinol Metab. 2003;88:4540–2.

    Article  CAS  PubMed  Google Scholar 

  41. Carr D, McLeod DT, Parry G, et al. Fine adjustment of thyroxine replacement dosage: comparison of thyrotrophin releasing hormone test using a sensitive thyrotrophin assay with measurement of free thyroid hormones and clinical assessment. Clin Endocrinol. 1988;28:325–33.

    Article  CAS  Google Scholar 

  42. Bunevicius R, Kazanavicius G, Zalinkevicius R, Prange Jr AJ. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N Engl J Med. 1999;340:424–9.

    Article  CAS  PubMed  Google Scholar 

  43. Escobar-Morreale HF, Escobar del Rey FE, Obregon MJ, Morreale de Escobar G. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology. 1996;137:2490–502.

    CAS  PubMed  Google Scholar 

  44. Escobar-Morreale HF, Botella-Carretero JI, Gomez-Bueno M, et al. Thyroid hormone replacement therapy in primary hypothyroidism: a randomized trial comparing L-thyroxine plus liothyronine with L-thyroxine alone. Ann Intern Med. 2005;142:412–24.

    Article  CAS  PubMed  Google Scholar 

  45. Toft AD. Thyroid hormone replacement—one hormone or two? N Engl J Med. 1999;340:469–70.

    Article  CAS  PubMed  Google Scholar 

  46. Clyde PW, Harari AE, Getka EJ, Shakir KMM. Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism. JAMA. 2003;290:2952–8.

    Article  CAS  PubMed  Google Scholar 

  47. Levitt A, Silverberg J. T4 plus T3 treatment for hypothyroidism: a double-blind comparison with usual T4. Los Angeles, CA: Program 74th Annual Meeting, American Thyroid Association, 2002, 112.

    Google Scholar 

  48. Sawka AM, Gerstein HC, Marriott MJ, et al. Does a combination regimen of thyroxine (T4) and 3,5,3′-triiodothyronine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind, randomized, controlled trial. J Clin Endocrinol Metab. 2003;88:4551–5.

    Article  CAS  PubMed  Google Scholar 

  49. Walsh JP, Shiels L, Lim EM, et al. Combined thyroxine/liothyronine treatment does not improve well-being, quality of life, or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. J Clin Endocrinol Metab. 2003;88:4543–50.

    Article  CAS  PubMed  Google Scholar 

  50. Cassio A, Cacciari E, Cicognani A, et al. Treatment for congenital hypothyroidism: thyroxine alone or thyroxine plus triiodothyronine? Pediatrics. 2003;111:1055–60.

    Article  PubMed  Google Scholar 

  51. Siegmund W, Spieker K, Weike AI, et al. Replacement therapy with levothyroxine plus triiodothyronine (bioavailable molar ratio 14:1) is not superior to thyroxine alone to improve well-being and cognitive performance in hypothyroidism. Clin Endocrinol. 2004;60:750–7.

    Article  CAS  Google Scholar 

  52. Ma C, Xie J, Huang X, Wang G, Wang Y, Wang X, Zuo S. Thyroxine alone or thyroxine plus triiodothyronine replacement therapy for hypothyroidism. Nucl Med Commun. 2009;30:586–93.

    Article  CAS  PubMed  Google Scholar 

  53. Joffe RT, Brimacombe M, Levitt AJ, Stagnaro-Green A. Treatment of clinical hypothyroidism with thyroxine and triiodothyronine: a literature review and metaanalysis. Psychosomatics. 2007;48:379–84.

    Article  CAS  PubMed  Google Scholar 

  54. Regalbuto C, Maiorana R, Alagona C, et al. Effects of either LT4 monotherapy or LT4/LT3 combined therapy in patients totally thyroidectomized for thyroid cancer. Thyroid. 2007;17:323–31.

    Article  CAS  PubMed  Google Scholar 

  55. Nygaard B, Jensen EW, Kvetny J, Jarlov A, Faber J. Effect of combination therapy with thyroxine (T4) and 3,5,3′-triiodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. Eur J Endocrinol. 2009;161:895–902.

    Article  CAS  PubMed  Google Scholar 

  56. Celi FS, Zemskova M, Linderman JD, Smith S, et al. Metabolic effects of liothyronine therapy in hypothyroidism: a randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J Clin Endocrinol Metab. 2011;96:3466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38–89.

    Article  CAS  PubMed  Google Scholar 

  58. Jonklaas J, Davidson B, Bhagat S, Soldin SJ. Triiodothyronine levels in athyreotic individuals during levothyroxine therapy. JAMA. 2008;299:769–77.

    Article  CAS  PubMed  Google Scholar 

  59. Butler PW, Smith SM, Linderman JD, Brychta RJ, Alberobello AT, Dubaz OM, et al. The Thr92Ala 5′ type 2 deiodinase gene polymorphism is associated with a delayed triiodothyronine secretion in response to the thyrotropin-releasing hormone-stimulation test: a pharmacogenomic study. Thyroid. 2010;20:1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Panicker V, Saravanan P, Vaidya B, Evans J, Hattersley AT, Frayling TM, Dayan CM. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94:1623–9.

    Article  CAS  PubMed  Google Scholar 

  61. Appelhof BC, Peeters RP, Wiersinga WM, Visser TJ, Wekking EM, Huyser J, et al. Polymorphisms in type 2deiodinase are not associated with well-being, neurocognitive functioning, and preference for combined thyroxine/3,5,3′-triiodothyronine therapy. J Clin Endocrinol Metab. 2005;90:6296–9.

    Article  CAS  PubMed  Google Scholar 

  62. Heemstra KA, Hoftijzer HC, van der Deure WM, Peeters RP, Fliers E, Appelhof BC, et al. Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clin Endocrinol. 2009;71:279–83.

    Article  CAS  Google Scholar 

  63. Torlontano M, Durante C, Torrente I, Crocetti U, Augello G, Ronga G, et al. Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J Clin Endocrinol Metab. 2008;93:910–3.

    Article  CAS  PubMed  Google Scholar 

  64. Vargens DD G, Neves RR, Bulzico DA, Ojopi EB, Meirelles RM, Pessoa CN, et al. Association of the UGT1A1-53(TA)n polymorphism with L-thyroxine doses required for thyrotropin suppression in patients with differentiated thyroid cancer. Pharmacogenet Genomics. 2011;21:341–3.

    Google Scholar 

  65. Biondi B, Wartofsky L. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism. J Clin Endocrinol Metab. 2012;97:2256–71.

    Google Scholar 

  66. Wartofsky L. Combination therapy with L-triiodothyronine and L-thyroxine for hypothyroidism. Curr Opin Endocrinol Diabetes Obes. 2013;20:460–6.

    Google Scholar 

  67. Hay ID, Charbonneau JW, Lewis BD, et al. Successful ultrasound-guided percutaneous ethanol ablation of neck metastases in 20 patients with postoperative TNM stage I papillary thyroid carcinoma resistant to conventional therapy. (abstract). In: 74th meeting ATA. Los Angeles; 2002. p. 176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Wartofsky MD, MACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wartofsky, L. (2016). Thyroid Hormone Therapy and Thyrotropin Suppression. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics