Skip to main content

Papillary Carcinoma: Clinical Aspects

  • Chapter
  • First Online:
Thyroid Cancer
  • 211 Accesses

Abstract

Although PTC tends to affect women more often than men (~2:1), the risk of cancer in thyroid nodules in men is equally, if not more, significant because of the much lower frequency of any type of thyroid disease in men. This chapter deals with several clinical aspects of these tumors, and descriptions of pathology and management appear in the immediate chapters that follow. In general, the discussion applies to all papillary cancers although there is a histologic basis to distinguish between classic papillary thyroid carcinoma and follicular variant papillary carcinoma. Moreover, both of the latter subtypes can be further classified into encapsulated or nonencapsulated papillary cancers as described in the chapter on pathology by Baloch and LiVolsi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toniato A, Boschin I, Casara D, et al. Papillary thyroid carcinoma: factors influencing prognosis. Ann Surg Oncol. 2008;15:1518–22.

    Article  PubMed  Google Scholar 

  2. Rivera M, Tuttle RM, Patel S, et al. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on it morphologic subtypes (histologic growth pattern). Thyroid. 2009;19:119–27.

    Article  PubMed  Google Scholar 

  3. Vivero M, Kraft S, Barletta JA. Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23:273–9.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  5. Aschebrook-Kilfoy B, Schechter RB, Shih Y-C, Kaplan EL, Chiu BC-H, Angelos P, Grogan RH. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol Biomarkers Prev. 2013. doi:10.1158/1055-9965.EPI-13-0242.

    PubMed  Google Scholar 

  6. Wartofsky L. Rising world incidence of thyroid cancer: increased detection or higher radiation exposure? Hormones. 2010;9:103–8.

    Article  PubMed  Google Scholar 

  7. Ain KB. Papillary thyroid carcinoma: etiology, assessment, and therapy. Endocrinol Metab Clin N Am. 1995;24:711–60.

    CAS  Google Scholar 

  8. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med. 1998;338:297–306.

    Article  CAS  PubMed  Google Scholar 

  9. Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2009;94:1612–7.

    Article  CAS  PubMed  Google Scholar 

  10. Chen AY, Levy L, Goepfert H, et al. The development of breast carcinoma in women with thyroid carcinoma. Cancer. 2001;92:225–31.

    Article  CAS  PubMed  Google Scholar 

  11. Enomoto K, Enomoto Y, Uchino S, Yamashita H, Noguchi S. Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J. 2013;60:629–35.

    Article  PubMed  Google Scholar 

  12. Hay I, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34:1192–202.

    Article  PubMed  Google Scholar 

  13. Wada N, Sugino K, Mimura T, Nagahama M, Kitagawa W, Shibuya H, et al. Pediatric differentiated thyroid carcinoma in stage I: risk factor analysis for disease free survival. BMC Cancer. 2009;9:306.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vriens MR, Moses W, Weng J, Peng M, Griffin A, Bleyer A, et al. Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer. 2011;117:259–67.

    Article  CAS  PubMed  Google Scholar 

  15. Robbins J, Merino MJ, Boice JD, et al. Thyroid cancer: a lethal endocrine neoplasm. Ann Intern Med. 1991;115:133–47.

    Article  CAS  PubMed  Google Scholar 

  16. Blanchard C, Brient C, Volteau C, Sebag F, Roy M, Drui D, et al. Factors predictive of lymph node metastasis in the follicular variant of papillary thyroid carcinoma. Br J Surg. 2013;100:1312–7.

    Article  CAS  PubMed  Google Scholar 

  17. Yu X-M, Schneider DF, Leverson G, Chen H, Sippel RS. Follicular variant of papillary thyroid carcinoma is a unique clinical entity: a population-based study of 10,740 cases. Thyroid. 2013;23:1263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jain M, Khan A, Patwardhan N, et al. Follicular variant of papillary thyroid carcinoma: a comparative study of histopathologic features and cytology results in 141 patients. Endocr Pract. 2001;7:79–84.

    Article  CAS  PubMed  Google Scholar 

  19. Kesmodel SB, Terhune KP, Canter RJ, et al. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma. Surgery. 2003;134:1005–12.

    Article  PubMed  Google Scholar 

  20. Burningham AR, Krishnan J, Davidson BJ, Ringel MD, Burman KD. Papillary and follicular variant of papillary carcinoma of the thyroid: initial presentation and response to therapy. Otolaryngol – Head Neck Surg. 2005;132(6):840–4.

    Article  PubMed  Google Scholar 

  21. Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28:1336–40.

    Article  PubMed  Google Scholar 

  22. Morris LGT, Shaha AR, Tuttle RM, Sikora AG, Ganly I. Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival. Thyroid. 2010;20:153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Regalbuto C, Malandrino P, Frasca F, Pellegriti G, LeMoli R, Vigneri R, Pezzino V. The tall cell variant of papillary thyroid carcinoma: clinical and pathological features and outcomes. J Endocrinol Invest. 2013;36:249–54.

    CAS  PubMed  Google Scholar 

  24. Roman S, Sosa JA. Aggressive variants of papillary thyroid cancer. Curr Opin Oncol. 2013;25:33–8.

    Article  PubMed  Google Scholar 

  25. van den Brekel MWM, Hekkenberg RJ, Asa SL, et al. Prognostic features in tall cell papillary carcinoma and insular thyroid carcinoma. Laryngoscope. 1997;107:254–9.

    Article  PubMed  Google Scholar 

  26. Prendiville S, Burman KD, Ringel MD, et al. Tall cell variant: an aggressive form of papillary thyroid carcinoma. Otolaryngol Head Neck Surg. 2000;122:352–7.

    CAS  PubMed  Google Scholar 

  27. Volante M, Landolfi S, Chiusa L, et al. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer. 2004;100:950–7.

    Article  PubMed  Google Scholar 

  28. Chao T-C, Lin J-D, Chen M-F. Insular carcinoma: infrequent subtype of thyroid cancer with aggressive clinical course. World J Surg. 2004;28:393–6.

    Article  PubMed  Google Scholar 

  29. Hay ID. Papillary thyroid carcinoma. Endocrinol Metab Clin North Am. 1990;19:545–76.

    CAS  PubMed  Google Scholar 

  30. Ito J, Noguchi S, Murakami T, et al. Factors affecting the prognosis of patients with carcinoma of the thyroid. Surg Gynecol Obstet. 1980;150:539.

    CAS  PubMed  Google Scholar 

  31. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.

    Google Scholar 

  32. Ito Y, Amino N, Miyauchi A. Thyroid ultrasonography. World J Surg. 2010;34:1171–80.

    Article  PubMed  Google Scholar 

  33. O’Connell K, Yen TW, Quiroz FF, Evans DB, Wang TS. The utility of routine preoperative cervical ultrasonography in patients undergoing thyroidectomy for differentiated thyroid cancer. Surgery. 2013;154:697–730.

    Article  PubMed  Google Scholar 

  34. Nikiforov YE, Yip L, Nikiforova MN. New strategies in diagnosing cancer in thyroid nodules: impact of molecular markers. Clin Cancer Res. 2013;19:2283–8.

    Article  CAS  PubMed  Google Scholar 

  35. Park YJ, Kim YA, Lee YJ, et al. Papillary microcarcinoma in comparison with larger papillary thyroid carcinoma in BRAF(V600E) mutation, clinicopathological features, and immunohistochemical findings. Head Neck. 2010;32:38–45.

    Article  PubMed  Google Scholar 

  36. Lim JY, Hong SW, Lee YS, Kim B-W, Park CS, Chang H-S, Cho JY. Clinicopathologic implications of the BRAF V600E mutation in papillary thyroid cancer: a subgroup analysis of f3130 cases in a single center. Thyroid. 2013;23:1423–30.

    Article  CAS  PubMed  Google Scholar 

  37. Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C, et al. The BRAF V600E mutation is an independent poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012;97:4390–8.

    Article  CAS  PubMed  Google Scholar 

  38. Guerra A, Fugazzola L, Marotta V, Cirillo M, Rossi S, Cirello V, et al. A high percentage of BRAF V600E alleles in papillary thyroid carcinoma predicts a poorer outcome. J Clin Endocrinol Metab. 2012;97:2333–40.

    Article  CAS  PubMed  Google Scholar 

  39. Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466–70.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gandolfi G, Sancissi V, Torricelli F, Ragazzi M, Frasoldati A, Piana S, Ciarrocchi A. Allele percentage of the BRAF V600E mutation in papillary thyroid carcinomas and corresponding lymph node metastases: no evidence for a role in tumor progression. J Clin Endocrinol Metab. 2013;98:E934–42.

    Article  PubMed  Google Scholar 

  41. Alzahrani AS, Xing M. Impact of lymph node metastases identified on central neck dissection (CND) on the recurrence of papillary thyroid cancer: potential role of BRAFV600E mutation in defining CND. Endocr Relat Cancer. 2013;20:13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li C, Lee KC, Schneider EB, Zeiger MA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97:4559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li C, Han A, Lee KC, Lee LC, Fox AC, Beninato T, et al. Does BRAF V600E mutation predict aggressive features in papillary thyroid cancer? Results from four endocrine surgery centers. J Clin Endocrinol Metab. 2013;98:3702–12.

    Article  CAS  PubMed  Google Scholar 

  44. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xing M, Haugen BR, Schlumberger M. Progress in molecular based management of differentiated thyroid cancer. Lancet. 2013;381:1058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. National Comprehensive Cancer Network (NCCN) Thyroid Carcinoma: clinical practice guidelines 2011. J Natl Compr Cancer Netw; Version 3.2011;5:568–621.

    Google Scholar 

  47. British Thyroid Association. Guidelines for the management of differentiated thyroid cancer in adults. Available at: www.british-thyroidassociation.org/guidelines.htm. 2nd ed. 2007.

  48. Jankovic B, Le KT, Hershman JM. Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab. 2013;98:474–82.

    Article  CAS  PubMed  Google Scholar 

  49. Dvorkin S, Robenshtok E, Hirsch D, Strenov Y, Shimon I, Benbassat CA. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting Hashimotos thyroiditis. J Clin Endocrinol Metab. 2013;98:2409–14.

    Article  CAS  PubMed  Google Scholar 

  50. Modi J, Patel A, Terrell R, et al. Papillary thyroid carcinomas from young adults and children contain a mixture of lymphocytes. J Clin Endocrinol Metab. 2003;88:4418–25.

    Article  CAS  PubMed  Google Scholar 

  51. Mechler C, Bounacer A, Suarez H, et al. Papillary thyroid carcinoma: 6 cases from 2 families with associated lymphocytic thyroiditis harbouring RET/PTC rearrangements. Br J Cancer. 2001;85:1831–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uchino S, Noguchi S, Kawamoto H, et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg. 2002;26:897–902.

    Article  PubMed  Google Scholar 

  53. Alsanea O, Clark OH. Familial thyroid cancer. Curr Opin Oncol. 2001;13:44–51.

    Article  CAS  PubMed  Google Scholar 

  54. Pal T, Vogl FD, Chappuis PO, et al. Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of non-medullary thyroid cancer: a hospital-based study. J Clin Endocrinol Metab. 2001;86:5307–12.

    Article  CAS  PubMed  Google Scholar 

  55. DeJong S, Demeter J, Jarosz H, et al. Primary papillary thyroid carcinoma presenting as cervical lymphadenopathy. Am Surg. 1993;59:172–7.

    CAS  Google Scholar 

  56. Zhang L, Wei W-j, Q-h J, Zhu Y-x, Wang A-y, Wang y, et al. Risk factors for neck nodal metastasis in papillary thyroid microcarcinoma: a study of 1066 patients. J Clin Endocrinol Metab. 2012;97:1250–7.

    Article  CAS  PubMed  Google Scholar 

  57. Eskander A, Merdad M, Freeman JL, Witterick IJ. Pattern of spread to the lateral neck in metastatic well-differentiated thyroid cancer: a systematic review and meta-analysis. Thyroid. 2013;23:583–92.

    Article  PubMed  Google Scholar 

  58. Randolph GW, Duh Q-Y, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22:1144–52.

    Article  PubMed  Google Scholar 

  59. Robenshtok E, Fish S, Bach A, Dominguez JM, Shaha A, Tuttle RM. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J Clin Endocrinol Metab. 2012;97:2706–13.

    Article  CAS  PubMed  Google Scholar 

  60. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  61. Falvo L, Catania A, D’Andrea V, et al. Prognostic importance of histologic vascular invasion in papillary thyroid carcinoma. Ann Surg. 2005;241:640–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Durante C, Filetti S. Management of papillary thyroid cancer patients in absence of postoperative radioiodine remnant ablation: tailoring follow-up by neck sonography. J Clin Endocrinol Metab. 2011;96:3059–61.

    Article  CAS  PubMed  Google Scholar 

  63. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Wartofsky L. Does an undetectable rhTSH-stimulated Tg level 12 months after initial treatment of thyroid cancer indicate remission? Clin Endocrinol. 2011;74:111–7.

    Article  CAS  Google Scholar 

  64. Robbins RJ, Srivastava S, Shaha A, et al. Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:6010–6.

    Article  CAS  PubMed  Google Scholar 

  65. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Wartofsky L. Diagnostic and therapeutic use of human recombinant thyrotropin (rhTSH) (Thyrogen®) in well differentiated thyroid cancer – current indications and future perspectives. Curr Pharm Anal. 2010;6:1–14.

    Article  CAS  Google Scholar 

  66. Joo J-Y, Park J-Y, Yoon Y-H, Choi B, Kim J-M, Jo YS, et al. Prediction of occult central lymph node metastasis in papillary thyroid carcinoma by preoperative BRAF analysis using fine-needle aspiration biopsy: a prospective study. J Clin Endocrinol Metab. 2012;97:3996–4003.

    Article  CAS  PubMed  Google Scholar 

  67. Ricarte-Filho J, Ganly I, Rivera M, Katabi N, Fu W, Shaha A, et al. Papillary thyroid carcinomas with cervical lymph node metastases can be stratified into clinically relevant prognostic categories using oncogenic BRAF, the number of nodal metastases, and extranodal extension. Thyroid. 2012;22:575–84.

    Article  CAS  PubMed  Google Scholar 

  68. Baskin HJ. Detection of recurrent papillary thyroid carcinoma by thyroglobulin assessment in the needle washout after fine-needle aspiration of suspicious lymph nodes. Thyroid. 2004;14:959–63.

    Article  PubMed  Google Scholar 

  69. Poorten VV, Hens G, Delaere P. Thyroid cancer in children and adolescents. Curr Opin Otolaryngol Head Neck Surg. 2013;21:135–42.

    Article  Google Scholar 

  70. Rivkees SA, Mazzaferri EL, Verburg FA, Reiners C, Luster M, Breuer CK, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011;32:798–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mello CJ, Veronikis I, Fraire AE, et al. Metastatic papillary thyroid carcinoma to lung diagnosed by bronchoalveolar lavage. J Clin Endocrinol Metab. 1996;81:406–10.

    CAS  PubMed  Google Scholar 

  72. Haugen BR, Kane MA. Approach to the thyroid cancer patient with extracervical metastases. J Clin Endocrinol Metab. 2010;95:987–93.

    Article  CAS  PubMed  Google Scholar 

  73. Farooki A, Leung V, Tala H, Tuttle RM. Skeletal-related events due to bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab. 2012;97:2433–9.

    Article  CAS  PubMed  Google Scholar 

  74. Wexler JA. Approach to the thyroid cancer patient with bone metastases. J Clin Endocrinol Metab. 2011;96:2296–307.

    Article  CAS  PubMed  Google Scholar 

  75. Muresan MM, Olivier P, Leclere J, Sirveaux F, Brunaud L, Klein M, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15:37–49.

    Article  CAS  PubMed  Google Scholar 

  76. Sisson JC, Jamadar DA, Kazerooni EA, et al. Treatment of micronodular lung metastases of papillary thyroid cancer: are the tumors too small for effective irradiation from radioiodine? Thyroid. 1998;8:215–21.

    Article  CAS  PubMed  Google Scholar 

  77. Ronga G, Filesi M, Montesano T, et al. Lung metastases from differentiated thyroid carcinoma: a 40 years’ experience. Q J Nucl Med. 2004;48:12–9.

    CAS  Google Scholar 

  78. Nixon IJ, Whitcher MM, Palmer FL, Tuttle RM, Shaha AR, Shah JP, et al. The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid. 2012;22:884–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Avram AM, Gielczyk R, Su L, et al. Choroidal and skin metastases from papillary thyroid cancer: case and a review of the literature. J Clin Endocrinol Metab. 2004;89:5303–7.

    Article  CAS  PubMed  Google Scholar 

  80. Pacini F, Castagna MG. Approach to the treatment of differentiated thyroid carcinoma. Med Clin N Am. 2012;96:369–83.

    Article  CAS  PubMed  Google Scholar 

  81. McLeod DS, Sawka AM, Cooper DS. Controversies in primary treatment of low-risk thyroid cancer. Lancet. 2013;381:1046–57.

    Article  PubMed  Google Scholar 

  82. Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab. 2006;91:4295–301.

    Article  CAS  PubMed  Google Scholar 

  83. Jin J, Machekano R, McHenry CR. The utility of preoperative serum thyroid-stimulating hormone level for predicting malignant nodular thyroid disease. Am J Surg. 2010;199:294–7.

    Article  CAS  PubMed  Google Scholar 

  84. Jonklaas J, Nsouli-Maktabi H, Soldin SJ. Endogenous thyrotropin and triiodothyronine concentrations in individuals with thyroid cancer. Thyroid. 2008;18:943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, Chen H. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab. 2008;93:809–14.

    Article  CAS  PubMed  Google Scholar 

  86. Mazeh H, Chen H. Advances in surgical therapy for thyroid cancer. Nat Rev Endocrinol. 2011;7:581–8.

    Article  PubMed  Google Scholar 

  87. Dralle H, Machens A. Primary surgery for differentiated thyroid cancer in the new millennium. J Endocrinol Invest. 2012;35:10–5.

    CAS  PubMed  Google Scholar 

  88. Liao S, Shindo M. Management of well-differentiated thyroid cancer. Otolaryngol Clin N Am. 2012;45:1163–79.

    Article  Google Scholar 

  89. Nixon IJ, Ganly I, Patel SG, Palmer FL, Whitcher MM, Tuttle RM, Shaha A, Shah JP. Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy. Surgery. 2012;151:571–9.

    Article  PubMed  Google Scholar 

  90. Giordano D, Valcavi R, Thompson GB, Pedroni C, Renna L, Gradoni P, Barbieri V. Complications of central neck dissection in patients with papillary thyroid carcinoma: results of a study on 1087 patients and review of the literature. Thyroid. 2012;22:911–7.

    Article  PubMed  Google Scholar 

  91. Mazzaferri EL, Doherty GM, Steward DL. The pros and cons of prophylactic central compartment lymph node dissection for papillary thyroid carcinoma. Thyroid. 2009;19:683–9.

    Article  PubMed  Google Scholar 

  92. Carling T, Carty SE, Ciarleglio MM, Cooper DS, Doherty GM, Kim LT, et al. American Thyroid Association design and feasibility of a prospective randomized controlled trial of prophylactic central lymph node dissection for papillary thyroid carcinoma. Thyroid. 2012;22:237–44.

    Article  PubMed  Google Scholar 

  93. Clayman GL, Agarwal G, Edeiken BS, Waguespack SG, Roberts DB, Sherman SI. Long-term outcome of comprehensive central compartment dissection in patients with recurrent/persistent papillary thyroid carcinoma. Thyroid. 2011;21:1309–16.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Loh K-C, Greenspan FS, Gee L, et al. Pathological tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients. J Clin Endocrinol Metab. 1997;82:3553–62.

    Article  CAS  PubMed  Google Scholar 

  95. Esnaola NF, Cantor SB, Sherman SI, et al. Optimal treatment strategy in patients with papillary thyroid cancer: a decision analysis. Surgery. 2001;130:921–30.

    Article  CAS  PubMed  Google Scholar 

  96. Dackiw APB, Zeiger M. Extent of surgery for differentiated thyroid cancer. Surg Clin N Am. 2004;84:817–32.

    Article  PubMed  Google Scholar 

  97. American Joint Committee on Cancer. The thyroid gland. In: AJCC cancer staging manual. 6th ed. New York: Springer; 2002. p. 77–87.

    Google Scholar 

  98. Rosario PW, Xavier ACM, Calsolari MR. Value of postoperative thyroglobulin and ultrasonography for the indication of ablation and 131-I activity in patients with thyroid cancer and low risk of recurrence. Thyroid. 2011;21:49–53.

    Article  PubMed  Google Scholar 

  99. Wartofsky L, Van Nostrand D. Radioiodine treatment of well-differentiated thyroid cancer. Endocrine. 2012;42:506–13.

    Article  CAS  PubMed  Google Scholar 

  100. Heufelder AE, Gorman CA. Radioiodine therapy in the treatment of differentiated thyroid cancer: guidelines and considerations. Endocrinologist. 1991;1:273–80.

    Google Scholar 

  101. Bal CS, Kumar A, Pant GS. Radioiodine dose for remnant ablation in differentiated thyroid carcinoma: a randomized clinical trial in 509 patients. J Clin Endocrinol Metab. 2004;89:1666–73.

    Article  CAS  PubMed  Google Scholar 

  102. Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid. 2009;19:1381–91.

    Article  PubMed  CAS  Google Scholar 

  103. Sacks W, Fung CH, Chang JT, Waxman A, Braunstein GD. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid. 2010;20:1235–45.

    Article  CAS  PubMed  Google Scholar 

  104. Mazzaferri EL. Thyroid remnant 131-I ablation for papillary and follicular thyroid carcinoma. Thyroid. 1997;7:265–71.

    Article  CAS  PubMed  Google Scholar 

  105. Sawka AM, Thephamongkhol K, Brouwers M, et al. A systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89:3668–76.

    Article  CAS  PubMed  Google Scholar 

  106. Mazzaferri E. Editorial: a randomized trial of remnant ablation—in search of an impossible dream? J Clin Endocrinol Metab. 2004;89:3662–4.

    Article  CAS  PubMed  Google Scholar 

  107. Haugen BR. Editorial: patients with differentiated thyroid carcinoma benefit from radioiodine remnant ablation. J Clin Endocrinol Metab. 2004;89:3665–7.

    Article  CAS  PubMed  Google Scholar 

  108. Ito Y, Masuoka H, Fukushima M, et al. Excellent prognosis of patients with solitary T1N0M0 papillary thyroid carcinoma who underwent thyroidectomy and elective lymph node dissection without radioiodine therapy. World J Surg. 2010;34:1285–90.

    Article  PubMed  Google Scholar 

  109. Luster M, Lippi F, Jarzab B, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12:49–64.

    Article  CAS  PubMed  Google Scholar 

  110. Robbins RJ, Tuttle RM, Sonenberg M, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin. Thyroid. 2001;11:865–9.

    Article  CAS  PubMed  Google Scholar 

  111. Robbins RJ, Larson SM, Sinha N, et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med. 2002;43:1482–8.

    CAS  PubMed  Google Scholar 

  112. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2013;366:1663–73.

    Article  Google Scholar 

  113. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2013;366:1674–85.

    Article  Google Scholar 

  114. Barbaro D, Boni G, Meucci G, et al. Radioiodine treatment with 30 mCi after recombinant human thyrotropin stimulation in thyroid cancer: effectiveness for postsurgical remnants ablation and possible role of iodine content in L-thyroxine in the outcome of ablation. J Clin Endocrinol Metab. 2003;88:4110–5.

    Article  CAS  PubMed  Google Scholar 

  115. Tuttle RM, Brokhin M, Omry G, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008;49:764–70.

    Article  PubMed  Google Scholar 

  116. Hänscheid H, Lassmann M, Luster M, et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med. 2006;47:648–54.

    PubMed  Google Scholar 

  117. Remy H, Borget I, Leboulleux S, Guilabert N, Lavielle F, Garsi J, Bournaud C, Gupta S, Schlumberger M, Ricard M. 131I effective half-life and dosimetry in thyroid cancer patients. J Nucl Med. 2008;49:1445–50.

    Article  CAS  PubMed  Google Scholar 

  118. Malandrino P, Latina A, Marescalco S, et al. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J Clin Endocrinol Metab. 2011;96:1703–9.

    Article  CAS  PubMed  Google Scholar 

  119. Zucchelli G, Iervasi A, Ferdeghini M, Iervasi G. Serum thyroglobulin measurement in the follow-up of patients treated for differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:482–9.

    CAS  PubMed  Google Scholar 

  120. Smallridge RC, Meek SE, Morgan MA, et al. Monitoring thyroglobulin in a sensitive immunoassay has comparable sensitivity to recombinant human TSH-stimulated thyroglobulin in follow-up of thyroid cancer patients. J Clin Endocrinol Metab. 2007;92:82–7.

    Article  CAS  PubMed  Google Scholar 

  121. Toubeau M, Touzery C, Arveux P, et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after (131)I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med. 2004;45:988–94.

    CAS  PubMed  Google Scholar 

  122. Spencer CA. Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96:3615–27.

    Article  CAS  PubMed  Google Scholar 

  123. Spencer CA, Petrovic I, Fatemi S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that ca result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:1283–91.

    Article  CAS  PubMed  Google Scholar 

  124. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:1433–41.

    Article  CAS  PubMed  Google Scholar 

  125. Kloos RT. Thyroid cancer recurrence in patients clinically free of disease with undetectable or very low serum thyroglobulin values. J Clin Endocrinol Metab. 2010;95:5241–8.

    Article  CAS  PubMed  Google Scholar 

  126. Mazzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab. 2002;87:1490–8.

    Article  CAS  PubMed  Google Scholar 

  127. Robbins RJ, Chon JT, Fleisher M, et al. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma? J Clin Endocrinol Metab. 2002;87:3242–7.

    Article  CAS  PubMed  Google Scholar 

  128. Pacini F, Molinaro E, Castagna MG, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668–73.

    Article  CAS  PubMed  Google Scholar 

  129. Antonelli A, Miccoli P, Fallahi P, et al. Role of neck ultrasonography in the follow-up of children operated on for thyroid papillary cancer. Thyroid. 2003;13:479–84.

    Article  PubMed  Google Scholar 

  130. Ito Y, Higashiyama T, Takamura Y, Kobayashi K, Miya A, Miyauchi A. Prognosis of patients with papillary thyroid carcinoma showing postoperative recurrence to the central neck. World J Surg. 2011;35:767–72.

    Article  PubMed  Google Scholar 

  131. Al-Saif O, Farrar WB, Bloomston M, Porter K, Ringel MD, Kloos RT. Long-term efficacy of lymph node reoperation for persistent papillary thyroid cancer. J Clin Endocrinol Metab. 2010;95:2187–94.

    Article  CAS  PubMed  Google Scholar 

  132. Yim JH, Kim WB, Kim EY, Kim WG, Kim TY, Ryu J-S, et al. The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J Clin Endocrinol Metab. 2011;96:2049–56.

    Article  CAS  PubMed  Google Scholar 

  133. Schuff KG. Management of recurrent/persistent papillary thyroid carcinoma: efficacy of the surgical option. J Clin Endocrinol Metab. 2011;96:2038–9.

    Article  CAS  PubMed  Google Scholar 

  134. Brignardello E, Corrias A, Isolato G, et al. Ultrasound screening for thyroid carcinoma in childhood cancer survivors: a case series. J Clin Endocrinol Metab. 2008;93:4840–3.

    Article  CAS  PubMed  Google Scholar 

  135. Van Nostrand D, Atkins F, Yeganeh F, et al. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121–34.

    Article  PubMed  Google Scholar 

  136. Klubo-Gwiezdzinska J, Van Nostrand D, Atkins FB, et al. Efficacy of dosimetric versus empirically determined prescribed activity of 131-I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:3217–25. doi:10.1210/jc.2011-0494. jc 2011-0494.

    Article  CAS  PubMed  Google Scholar 

  137. Lassman M, Hanscheid H, Verburg FA, Luster M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55:107–15.

    Google Scholar 

  138. Sgouros G, Hobbs RF, Atkins FB, et al. Three-dimensional radiobiological dosimetry (3D-RD) with 124-I PET for 131-I therapy of thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 1:541–7.

    Google Scholar 

  139. Verburg FA, Reiners C, Hanscheid H. Approach to the patient: role of dosimetric RAI Rx in children with DTC. J Clin Endocrinol Metab. 2013;98:3912–9.

    Article  CAS  PubMed  Google Scholar 

  140. de Keizer B, Hoekstra A, Konijnenberg MW, et al. Bone marrow dosimetry and safety of high 131-I activities given after recombinant human thyroid-stimulating hormone to treat metastatic differentiated thyroid cancer. J Nucl Med. 2004;45:1549–54.

    PubMed  Google Scholar 

  141. Mazzaferri EL. Empirically treating high serum thyroglobulin levels. J Nucl Med. 2005;46:1079–88.

    PubMed  Google Scholar 

  142. Ma C, Xie J, Kuang A. Is empiric 131-I therapy justified for patients with positive thyroglobulin and negative 131-K whole-body scanning results? J Nucl Med. 2005;46:1164–70.

    PubMed  Google Scholar 

  143. Park J-W, Clark OH. Redifferentiation therapy for thyroid cancer. Surg Clin N Am. 2004;84:921–43.

    Article  PubMed  Google Scholar 

  144. Brierley JD. Update on external beam radiation therapy in thyroid cancer. J Clin Endocrinol Metab. 2011;96:2289–95.

    Article  CAS  PubMed  Google Scholar 

  145. Brilli L, Pacini F. Targeted therapy in refractory thyroid cancer: current achievements and limitations. Future Oncol. 2011;7:657–68.

    Article  PubMed  Google Scholar 

  146. de la Fouchardiere C, Droz JP. Targeted therapies and thyroid cancer: an update. Anticancer Drugs. 2011;22:688–99.

    Article  PubMed  CAS  Google Scholar 

  147. Takami HE. Current status of molecularly targeted drugs for the treatment of advanced thyroid cancer. Endocr J. 2011;58:151–3.

    Article  CAS  PubMed  Google Scholar 

  148. Duntas LH, Cooper DS. Review on the occasion of a decade of recombinant human TSH: prospects and novel uses. Thyroid. 2008;18:509–16.

    Article  CAS  PubMed  Google Scholar 

  149. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Mete M, Jonklaas J, Wartofsky L. Radioiodine treatment of metastatic thyroid cancer: relative efficacy and side effect profile after preparation by thyroid hormone withdrawal vs. recombinant human TSH. Accepted for publication. Thyroid. 2012;22:310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Van Nostrand D, Khorjekar G, O’Neil J, Moreau S, Atkins F, Kharazi P, et al. Recombinant human thyroid stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole body and 124I PET. J Nucl Med. 2012;53:359–62.

    Article  PubMed  CAS  Google Scholar 

  151. Klubo-Gwiezdzinska J, Burman KD, Van Nostrand D, Mete M, Jonklaas J, Wartofsky L. Potential use of recombinant human thyrotropin in the treatment of distant metastases in patients with differentiated thyroid cancer. Endocr Pract. 2013;19:139–48.

    Article  PubMed  Google Scholar 

  152. Burguera B, Gharib H. Thyroid incidentalomas. Prevalence, diagnosis, significance, and management. Endocrinol Metab Clin N Am. 2000;29:187–203.

    Article  CAS  Google Scholar 

  153. Hay ID, Hutchinson ME, Gonzalez-Losada T, et al. Papillary thyroid micro-carcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008;144:980–8.

    Article  PubMed  Google Scholar 

  154. Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg. 2010;34:28–35.

    Article  PubMed  Google Scholar 

  155. Hughes DT, Haymart MR, Miller BS, Gauger PG, Doherty GM. The most commonly occurring papillary thyroid cancer in the United States is now a microcarcinoma in a patient older than 45 years. Thyroid. 2011;21:231–6.

    Article  PubMed  Google Scholar 

  156. Ross DS, Litofsky D, Ain KB, et al. Recurrence after treatment of micropapillary thyroid cancer. Thyroid. 2009;19:1–6.

    Article  Google Scholar 

  157. Kuo EJ, Goffredo P, Sosa JA, Roman SA. Aggressive variants of papillary thyroid microcarcinoma are associated with extrathyroidal spread and lymph-node metastases: a population-level analysis. Thyroid. 2013;23:1305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sugitani I, Toda K, Yamada K, et al. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg. 2010;34:1222–31.

    Article  PubMed  Google Scholar 

  159. Nilsson I-L, Arnberg F, Zedenius J, Sundin A. Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm. World J Surg. 2011;35:2691–7.

    Article  PubMed  Google Scholar 

  160. Nahas Z, Goldenberg D, Fakhry C, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope. 2005;115:237–43.

    Article  PubMed  Google Scholar 

  161. Yun M, Noh T-W, Cho A, et al. Visually discernible [18F]Fluorodeoxyglucose uptake in papillary thyroid microcarcinoma: a potential new risk factor. J Clin Endocrinol Metab. 2010;95:3182–8.

    Article  CAS  PubMed  Google Scholar 

  162. Kang HW, Kim S-K, Kang H-S, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab. 2003;88:4100–4.

    Article  CAS  PubMed  Google Scholar 

  163. Pellegriti G, Scollo C, Lumera G, et al. Clinical behavior and outcome of papillary thyroid cancers smaller than 1.5 cm in diameter: study of 299 cases. J Clin Endocrinol Metab. 2004;89:3713–20.

    Article  CAS  PubMed  Google Scholar 

  164. Pearce EN, Braverman LE. Editorial: papillary thyroid microcarcinoma outcomes and implications for treatment. J Clin Endocrinol Metab. 2004;89:3710–2.

    Article  CAS  PubMed  Google Scholar 

  165. Ito Y, Uruno T, Nakano K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 2003;13:381–7.

    Article  PubMed  Google Scholar 

  166. Durante C, Attard M, Torlontano M, et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. J Clin Endocrinol Metab. 2010;95:4882–8.

    Article  CAS  PubMed  Google Scholar 

  167. Gallicchio R, Giacomobono S, Capacchione D, Nardelli A, Barbato F, Nappi A, et al. Should patients with remnants from thyroid microcarcinoma really not be treated with iodine-131 ablation? Endocrine. 2013;44:426–33.

    Article  CAS  PubMed  Google Scholar 

  168. Malandrino P, Pellegriti G, Attard M, Violi MA, Giordano C, Sciacca L, et al. Papillary thyroid microcarcinomas: a comparative study of the characteristics and risk factors at presentation in two cancer registries. J Clin Endocrinol Metab. 2013;98:1427–34.

    Article  CAS  PubMed  Google Scholar 

  169. Lee KJ, Cho YJ, Kim SJ, Lee SC, Kim JG, Ahn CJ, Lee DH. Analysis of the clinicopathologic features of papillary thyroid microcarcinoma based on 7-mm tumor size. World J Surg. 2011;35:318–23.

    Article  PubMed  Google Scholar 

  170. Tuttle RM, Rondeau G, Lee NY. A risk-adapted approach to the use of radioactive iodine and external beam radiation in the treatment of well-differentiated thyroid cancer. Cancer Control. 2011;18:89–95.

    PubMed  Google Scholar 

  171. Castagna MG, Maino F, Cipri C, Belardini V, Theodoropoulou A, Cevenini G, Pacini F. Delayed risk stratification to include the response to initial treatment (surgery and radioiodine ablation) has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol. 2011;165:441–6.

    Article  CAS  PubMed  Google Scholar 

  172. Kim TY, Hong SJ, Kim JM, Kim WG, Gong G, Ryu JS, et al. Prognostic parameters for recurrence of papillary thyroid microcarcinoma. BMC Cancer. 2008;8:296. doi:10.1186/1471-2407-8-296.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wartofsky L. Management of papillary microcarcinoma: primum non nocere? J Clin Endocrinol Metab. 2012;97:1169–72.

    Article  CAS  PubMed  Google Scholar 

  174. Niemeier LA, Kuffner AH, Song C, Carty SE, Hodak SP, Yip L, et al. A combined molecular-pathologic score improves risk stratification of thyroid papillary microcarcinoma. Cancer. 2011;118:2069–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Lee ST, Kim SW, Ki CS, Jang JH, Shin JH, Oh YL, et al. Clinical implications of highly sensitive detection of the BRAF V600E mutation in fine needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab. 2012;97:2299–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Wartofsky MD, MACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wartofsky, L. (2016). Papillary Carcinoma: Clinical Aspects. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics