Skip to main content

Safety and Quality of Irradiated Fruits and Vegetables

  • Chapter
  • First Online:
Fruit Preservation

Part of the book series: Food Engineering Series ((FSES))

  • 1462 Accesses

Abstract

Foodborne illness outbreaks associated with contaminated fruits, vegetables, and salads have led to a reexamination of means to improve agricultural, postharvest, and supply chain controls. Irradiation is an effective means of inactivating human pathogens on a variety of fresh and fresh-cut fruits and vegetables. This chapter will describe and compare the technologies used to generate and apply irradiation. The literature on the efficacy of the process will be discussed and the commercial aspects of implementation will be examined, including issues related to packaging suitable for irradiation. Details will be presented on the regulations governing irradiation, both in the US and in major trading partners internationally. Finally, this chapter will summarize recent research related to this nonthermal processing technology as it can be applied to fresh produce for food safety purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amour, J., C. Gosselin, J. Arul, F. Castaigne, and C. Willemot. 1993. Gamma-radiation affects cell wall composition of strawberries. Journal of Food Science 58: 182–185.

    Article  Google Scholar 

  • Annous, B.A., E.B. Solomon, P.H. Cooke, and A. Burke. 2005. Biofilm formation by Salmonella spp. on cantaloupe melons. Journal of Food Safety 25: 276–287.

    Article  Google Scholar 

  • APHIS (Animal Plant Health Inspection Service). 2013. Notice of request for extension of approval of an information collection; irradiation phytosanitary treatment of imported fruits and vegetables, http://www.gpo.gov/fdsys/pkg/FR-2012-10-31/html/2012-26727.htm (accessed Feb 22, 2103).

  • Bari, M.L., M.I. Al-Haq, T. Kawasaki, et al. 2004. Irradiation to kill Escherichia coli O157:H7 and Salmonella on ready-to-eat radish and mung bean sprouts. Journal of Food Protection 67: 2263–2268.

    Article  CAS  Google Scholar 

  • Bari, M.L., M. Nakauma, S. Todoriki, et al. 2005. Effectiveness of irradiation treatments in inactivating Listeria monocytogenes on fresh vegetables at refrigeration temperature. Journal of Food Protection 68(2): 318–323.

    Article  CAS  Google Scholar 

  • Beach, C. 2013. Canadian firm prepares to irradiate leafy greens. The Packer, p. B4. Jan 21, 2013.

    Google Scholar 

  • Boylston, T.D., C.A. Reitmeier, J.H. Moy, G.A. Mosher, and L. Taladriz. 2002. Sensory quality and nutrient composition of three Hawaiian fruits treated by x-irradiation. Journal of Food Quality 25: 419–433.

    Article  CAS  Google Scholar 

  • Bramlage, W.J., and H.M. Couey. 1965. Gamma radiation of fruits to extend market life Marketing Res Rep No 717. Washington, DC: ARS-USDA.

    Google Scholar 

  • Buck, J.W., R.R. Walcott, and L.R. Beuchat. 2003. Recent trends in microbiological safety of fruits and vegetables. Online. Plant Health Progress. doi:10.1094/PHP-2003-0121-01-RV.

    Article  Google Scholar 

  • Caillet, S., M. Millette, M. Turgis, S. Salmieri, and M. Lacroix. 2006. Influence of antimicrobial compounds and modified atmosphere packaging on radiation sensitivity of Listeria monocytogenes present in ready-to-use carrots (Daucus carota). Journal of Food Protection 69: 221–227.

    Article  CAS  Google Scholar 

  • Calvin, L. 2007. Outbreak linked to spinach forces reassessment of food safety practices. Amber Waves, USDA Economic Research Service, http://ideas.repec.org/a/ags/uersaw/125239.html (accessed Feb 26, 2103).

  • CDC (Centers for Disease Control and Prevention). 2011. CDC estimates of foodborne illness in the united states, http://www.cdc.gov/foodborneburden/PDFs/FACTSHEET_A_FINDINGS_updated4-13.pdf (accessed Feb 26, 2013).

  • Codex Alimentarius Commission. 1984. Codex general standard for irradiated foods and recommended international code of practice for operation of radiation facilities used for the treatment of foods, vol. XV. Geneva, Switzerland: WHO.

    Google Scholar 

  • CNPP (Center for Nutrition Policy and Promotion). 2010. U.S. Dept. Agriculture—Dietary Guidelines for Americans, http://www.cnpp.usda.gov/dietaryguidelines.htm (accessed Feb 26, 2013).

  • CSPI (Center for Science in the Public Interest). 2007. Outbreak alert: Closing the gaps in our federal food-safety net, http://www.cspinet.org/foodsafety/outbreak_alert.pdf (accessed Feb 26, 2013).

  • Dhokane, V.S., S. Hajare, R. Shashidhar, A. Sharma, and J.R. Bandekar. 2006. Radiation processing to ensure safety of minimally processed carrot (Daucus carota) and cucumber (Cucumis sativus): Optimization of dose for the elimination of Salmonella Typhimurium and Listeria monocytogenes. Journal of Food Protection 69(2): 444–448.

    Article  CAS  Google Scholar 

  • Diehl, J.F. 1995. Safety of irradiated foods, 2nd ed. New York: Marcel Dekker.

    Google Scholar 

  • Dubery, I.A., L.J. van Rensburg, and J.C. Schabort. 1984. Malic enzyme activity and related biochemical aspects during ripening of irradiated mango fruit. Phytochemistry 23: 1383–1386.

    Article  CAS  Google Scholar 

  • ERS (Economic Research Service), USDA. 2008. Food availability (per capita) data system, http://www.ers.usda.gov/Data/FoodConsumption (accessed Feb 26, 2013)

  • FAO/IAEA/WHO. 1997. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy, in joint FAO/IAEA/WHO study group on high-dose irradiation. WHO Technical Report Series 890.

    Google Scholar 

  • Fan, X., and J.P. Mattheis. 2001. 1-Methylcyclopropene and storage temperature influence responses of Gala apple fruit to gamma irradiation. Postharvest Biology and Technology 23: 143–151.

    Article  CAS  Google Scholar 

  • Fan, X., L. Argenta, and J. Mattheis. 2001. Impacts of ionizing radiation on volatile production by ripening Gala apple fruit. Journal of Agricultural and Food Chemistry 49: 254–262.

    Article  CAS  Google Scholar 

  • Fan, X. 2005. Antioxidant capacity of fresh-cut vegetables exposed to ionizing radiation. Journal of the Science of Food and Agriculture 85: 995–1000.

    Article  CAS  Google Scholar 

  • Fan, X., B.A. Niemira, and A. Prakash. 2008. Irradiation of fresh and fresh-cut fruits and vegetables. Food Technology 3: 36–43.

    Google Scholar 

  • Fan, X., K. Sokorai, B.A. Niemira, R.S. Mills, and M.Y. Zhen. 2012. Quality of gamma ray-irradiated iceberg lettuce and treatments to minimize irradiation-induced disorders. Hortscience 47: 1108–1112.

    CAS  Google Scholar 

  • FDA (U.S. Food and Drug Administration). 2004. Produce safety from production to consumption: 2004 action plan to minimize foodborne illness associated with fresh produce consumption, http://www.fda.gov/Food/FoodSafety/Product-SpecificInformation/FruitsVegetablesJuices/FDAProduceSafetyActivities/ProduceSafetyActionPlan/ucm129487.htm (accessed Feb 26, 2013).

  • ———. 2008. Final Rule (73 FR 49593), Irradiation in the production, processing and handling of food. 21 CFR Part 179, http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm093651.htm (accessed Feb 26, 2013).

  • Fett, W.F. 2000. Naturally occurring biofilms on alfalfa and other types of sprouts. Journal of Food Protection 63(5): 625–632.

    Article  CAS  Google Scholar 

  • Foley, D.M., A. Dufour, L. Rodriguez, F. Caporaso, and A. Prakash. 2002. Reduction of Escherichia coli 0157:H7 in shredded Iceberg lettuce by chlorination and gamma irradiation. Radiation Physics and Chemistry 63: 391–396.

    Article  CAS  Google Scholar 

  • Foley, D.M., M. Euper, F. Caporaso, and A. Prakash. 2004. Irradiation and chlorination effectively reduces Escherichia coli O157:H7 inoculated on cilantro (Coriandrum sativum) without negatively affecting quality. Journal of Food Protection 67(10): 2092–2098.

    Article  CAS  Google Scholar 

  • FSANZ (Food Standards Australia and New Zealand). 2013. Application A1069—Irradiation of Tomatoes & Capsicums, http://www.foodstandards.gov.au/foodstandards/applications/applicationa1069irra5511.cfm (accessed Feb 22, 2013).

  • FSA (Food Standards Agency). 2012. Irradiated food, http://www.food.gov.uk/policy-advice/irradfoodqa/#.USfLRvLBmM0 (accessed Feb 22, 2013)

  • Gomes, C.R., G. Moreira, M.E. Castell-Perez, et al. 2008. E-Beam irradiation of bagged, ready-to-eat spinach leaves (Spinacea oleracea): An engineering approach. Journal of Food Science 73: E95–E102.

    Article  CAS  Google Scholar 

  • Gómez-López, V.M., A. Rajkovic, P. Ragaert, N. Smigic, and F. Devlieghere. 2009. Chlorine dioxide for minimally processed produce preservation: A review. Trends in Food Science & Technology 20(1): 17–26.

    Article  Google Scholar 

  • Goodburn, C., and C.A. Wallace. 2013. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 32(2): 418–427.

    Article  CAS  Google Scholar 

  • Goularte, L., C.G. Martins, I.C. Morales-Aizpurua, et al. 2004. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce (Lactuca sativa L.). Radiation Physics and Chemistry 71: 155–159.

    Article  Google Scholar 

  • Grandison, A.S. 1993. Combination treatments including electron beam irradiation for extending the shelf-life of fresh fruits. Communication at the 2nd FAO/IAEA Coordination Meeting on Irradiation in Combination with Other Processes for Improving Food Quality. FRDC, Saint-Hyacinthe, Quebec.

    Google Scholar 

  • Hsu, W.Y., A. Simonne, P. Jitareerat, and M.R. Marshall Jr. 2010. Low-dose irradiation improves microbial quality and shelf life of fresh mint (Mentha piperita L.) without compromising visual quality. Journal of Food Science 75: M222–M230.

    Article  CAS  Google Scholar 

  • Jeong, S., B.P. Marks, E.T. Ryser, and S.R. Moosekian. 2010. Inactivation of Escherichia coli O157:H7 on lettuce, using low-energy X-ray irradiation. Journal of Food Protection 73: 547–551.

    Article  Google Scholar 

  • Jin, T., and B.A. Niemira. 2011. Application of antimicrobial polylactic acid coating in reduction of Escherichia coli O157:H7 and Salmonella Stanley on apples. Journal of Food Science 76(3): M184–M188.

    Article  CAS  Google Scholar 

  • Kamat, A.S., N. Ghadge, M.S. Ramamurthy, and M.D. Alur. 2005. Effect of low-dose irradiation on shelf life and microbiological safety of sliced carrot. Journal of the Science of Food and Agriculture 85(13): 2213–2219.

    Article  CAS  Google Scholar 

  • Khattak, A.B., N. Bibi, M.A. Chaudry, et al. 2005. Shelf life extension of minimally processed cabbage and cucumber through gamma irradiation. Journal of Food Protection 69(11): 2648–2663.

    Google Scholar 

  • Kim, J., J. Lee, J. Kim, et al. 2006. Effect of gamma irradiation on Listeria ivanovii inoculated to Iceberg lettuce stored at cold temperature. Food Control 17: 397–401.

    Article  Google Scholar 

  • Korber, D.R., A. Choi, G.M. Wolfaardt, S.C. Ingham, and D.E. Caldwell. 1997. Substratum topography influences susceptibility of Salmonella enteritidis biofilms to trisodium phosphate. Applied and Environmental Microbiology 63: 3352–3358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larrigaudiere, C., A. Latche, J.C. Pech, and C. Triantaphylides. 1991. Relationship between stress ethylene production induced by gamma irradiation and ripening of cherry tomatoes. Journal of the American Society for Horticultural Science 116: 1000–1003.

    CAS  Google Scholar 

  • Lee, N.Y., C. Jo, D.H. Shin, W.G. Kim, and M.W. Byun. 2006. Effect of gamma-irradiation on pathogens inoculated into ready-to-use vegetables. Food Microbiology 23(7): 649–656.

    Article  CAS  Google Scholar 

  • López, L., S. Avendaño, J. Romero, S. Garrido, J. Espinoza, and M. Vargas. 2005. Effect of gamma irradiation on the microbiological quality of minimally processed vegetables. Archivos Latinoamericanos de Nutrición 55(3): 287–292.

    PubMed  Google Scholar 

  • Lovell, R.T., and G.J. Flick. 1966. Irradiation of Gulf Coast area strawberries. Food Technology 29: 99–102.

    Google Scholar 

  • Mahmoud, B.S.M. 2009. Effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on shredded iceberg lettuce. Food Microbiology 27(1): 109–114.

    Article  Google Scholar 

  • Mahmoud, B.S.M., G. Bachman, and R.H. Linton. 2009. Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves by X-ray. Food Microbiology 27(1): 24–28.

    Article  Google Scholar 

  • Mandrell, R.E. 2009. Enteric human pathogens associated with fresh produce: Sources, transport and ecology. In Microbial Safety of Fresh Produce, ed. X. Fan, B.A. Niemira, C.J. Doona, F.E. Feeherry, and R.B. Gravani, 5–41. Ames, IA: Blackwell.

    Google Scholar 

  • Maxie, E.C., and A.S. Abdel-Kader. 1966. Food irradiation-physiology of fruits as related to the feasibility of the technology. Advances in Food Research 15: 105–145.

    Article  CAS  Google Scholar 

  • Miller, W.R., and R.E. McDonald. 1966. Postharvest quality of GA-treated Florida grapefruit after gamma irradiation with TBZ and storage. Postharvest Biology and Technology 7: 253–260.

    Article  Google Scholar 

  • Mintier, A.M., and D.M. Foley. 2006. Electron beam and gamma irradiation effectively reduce Listeria monocytogenes populations on chopped romaine lettuce. Journal of Food Protection 9(3): 570–574.

    Article  Google Scholar 

  • Moreira, R.G., A.F. Puerta-Gomez, J.S. Kim, and M.E. Castell-Perez. 2012. Factors affecting radiation D-values (D10) of an Escherichia coli cocktail and Salmonella Typhimurium inoculated in fresh produce. Journal of Food Science 77: E104–E111.

    Article  CAS  Google Scholar 

  • Neal, J.A., E. Cabrera-Diaz, M. Márquez-Gonzaález, J.E. Maxim, and A. Castillo. 2008. Reduction of Escherichia coli O157:H7 and Salmonella on baby spinach, using electron beam radiation. Journal of Food Protection 71: 2415–2420.

    Article  Google Scholar 

  • Niemira, B.A., C.H. Sommers, and X. Fan. 2002. Suspending lettuce type influences recoverability and radiation sensitivity of Escherichia coli O157:H7. Journal of Food Protection 65(9): 1388–1393.

    Article  Google Scholar 

  • Niemira, B.A. 2003. Radiation sensitivity and recoverability of Listeria monocytogenes and Salmonella on 4 lettuce types. Journal of Food Science 68(9): 2784–2787.

    Article  CAS  Google Scholar 

  • Niemira, B.A., X. Fan, K.J.B. Sokorai, and C.H. Sommers. 2003. Ionizing radiation sensitivity of Listeria monocytogenes and L. innocua inoculated on endive (Cichorium endiva). Journal of Food Protection 66: 993–998.

    Article  Google Scholar 

  • Niemira, B.A., and E.B. Solomon. 2005. Sensitivity of planktonic and biofilm-associated Salmonella to ionizing radiation. Applied and Environmental Microbiology 71(5): 2732–2736.

    Article  CAS  Google Scholar 

  • Niemira, B.A., C.H. Sommers, and D. Ukuku. 2005. Mechanisms of microbial spoilage of fruits and vegetables. In Produce Degradation: Reaction Pathways and their Prevention, ed. O. Lamikanra, S.H. Imam, and D.O. Ukuku, 463–482. New York, NY: Taylor & Francis.

    Google Scholar 

  • Niemira, B.A. 2007a. Irradiation sensitivity of planktonic and biofilm-associated Escherichia coli O157:H7 isolates is influenced by culture conditions. Applied and Environmental Microbiology 73(10): 3239–3244.

    Article  CAS  Google Scholar 

  • ———. 2007b. Relative efficacy of sodium hypochlorite wash vs. irradiation to inactivate Escherichia coli o157:h7 internalized in leaves of romaine lettuce and baby spinach. Journal of Food Protection 70(11): 2526–2532.

    Article  Google Scholar 

  • ———. 2008. Influence of growth temperature on irradiation sensitivity of planktonic and biofilm-associated Listeria monocytogenes and L. innocua. Food and Bioprocess Technology. doi:10.1007/s11947-008-0079-5.

    Article  Google Scholar 

  • Niemira, B.A., and P. Cooke. 2010. Escherichia coli O157:H7 biofilm formation on lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes. Journal of Food Science 75(5): M270–M277.

    Article  CAS  Google Scholar 

  • Niemira, B.A., and M. Gao. 2011. Irradiation as a non-thermal process for beverages, juices and fluid foods (Ch. 7). In Novel thermal and non-thermal technologies for fluid foods, ed. P.J. Cullen, B. Tiwari, and V. Valdramidis. Amsterdam, Netherlands: Elsevier.

    Google Scholar 

  • Niemira, B.A., and X. Fan. 2013. Advances in processing technologies to preserve and enhance the safety of fresh and fresh-cut fruits and vegetables, Encyclopedia of food microbiology, 2nd ed. Ames, IA: Wiley-Blackwell.

    Google Scholar 

  • Nieto-Sandoval, J.M., L. Almela, J.A. Fernandez-Lopez, and J.A. Muñoz. 2000. Effect of electron beam irradiation on color and microbial burden of red paprika. Journal of Food Protection 63: 633–637.

    Article  CAS  Google Scholar 

  • OJEU (Official Journal of the European Union). 2011. List of approved facilities for the treatment of foods and food ingredients with ionising radiation in the Member States, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2011:077:0014:0017:EN:PDF (accessed Feb 22, 2013).

  • Painter, J.A., R.M. Hoekstra, T. Ayers, R.V. Tauxe, C.R. Braden, F.J. Angulo, et al. 2013. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging Infectious Disease, http://dx.doi.org/10.3201/eid1903.111866 (accessed Feb 26, 2013).

    Article  Google Scholar 

  • Prakash, A., P. Inthajak, H. Huibregtse, F. Caporaso, and D.M. Foley. 2000. Effects of low-dose gamma irradiation and conventional treatments on shelf life and quality characteristics of diced celery. Journal of Food Science 65: 1070–1075.

    Article  CAS  Google Scholar 

  • Prakash, A., N. Johnson, and D. Foley. 2007. Irradiation D values of Salmonella spp. in diced tomatoes dipped in 1% calcium chloride. Foodborne Pathogens and Disease 4: 84–88.

    Article  CAS  Google Scholar 

  • Rajkowski, K.T., and D.W. Thayer. 2000. Reduction of Salmonella spp. and strains of Escherichia coli O157:H7 by gamma radiation of inoculated sprouts. Journal of Food Protection 63: 871–875.

    Article  CAS  Google Scholar 

  • Scharff, R.L. 2010. Health-related costs from foodborne illness in the United States. Produce Safety Project at Georgetown University, http://www.producesafetyproject.org/admin/assets/files/Health-Related-Foodborne-Illness-Costs-Report.pdf-1.pdf (accessed Feb 26, 2013).

  • Schmidt, H.M., M.P. Palekar, J.E. Maxim, and A. Castillo. 2006. Improving the microbiological quality and safety of fresh-cut tomatoes by low-dose electron beam irradiation. Journal of Food Protection 69: 575–581.

    Article  Google Scholar 

  • Shashidhar, R., V.S. Dhokane, S.N. Hajare, A. Sharma, and J.R. Bandekar. 2007. Effectiveness of radiation processing for elimination of Salmonella Typhimurium from minimally processed pineapple (Ananas comosus Merr.). Journal of Food Science 72: M98–M101.

    Article  CAS  Google Scholar 

  • Sivapalasingam, S., C.R. Friedman, L. Cohen, and R.V. Tauxe. 2004. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. Journal of Food Protection 67: 2342–2353.

    Article  Google Scholar 

  • Stewart, P.S., P.K. Mukherjee, and M.A. Ghannoum. 2004. Biofilm antimicrobial resistance. In Microbial biofilms, ed. M.A. Ghannoum and G.A. O’Toole, 250–268. Washington, DC: ASM Press.

    Chapter  Google Scholar 

  • Strydom, G.J., J. Van Staden, and M.T. Smith. 1991. The effect of gamma radiation on the ultrastructure of the peel of banana fruits. Environmental and Experimental Botany 31: 43–49.

    Article  Google Scholar 

  • Thayer, D.W., and G. Boyd. 1995. Radiation sensitivity of Listeria monocytogenes on beef as affected by temperature. Journal of Food Science 60: 237–240.

    Article  CAS  Google Scholar 

  • Thomas, P. 1986. Radiation preservation of foods of plant origin. III. Tropical fruits: Bananas, mangoes, and papayas. CRC Critical Reviews in Food Science and Nutrition 23: 147–205.

    Article  CAS  Google Scholar 

  • Villagomez, N.S., E.A.N. Herrera, L.R. Orozco, G. Wild-Padua, and M.H. Iturriaga. 2010. Effect of storage time on the efficacy of chemical and irradiation treatments to inactivate Salmonella on cilantro (Coriandrum sativum L.). Journal of Food Safety 30: 584–598.

    Google Scholar 

  • Waje, C.K., S.Y. Jun, Y.K. Lee, et al. 2009. Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts. Food Control 20: 200–204.

    Article  CAS  Google Scholar 

  • Wilson, J.E. 1974. Irradiation of polymers: Crosslinking versus scission. Ch 7. In Radiation chemistry of monomers, polymers and plastics. New York: Marcel Dekker.

    Google Scholar 

Download references

Acknowledgments

The author extends thanks to David Geveke, Ph.D., and Joseph Sites, PE, for their thoughtful reviews of this manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture (USDA), which is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan A. Niemira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niemira, B.A. (2018). Safety and Quality of Irradiated Fruits and Vegetables. In: Rosenthal, A., Deliza, R., Welti-Chanes, J., Barbosa-Cánovas, G. (eds) Fruit Preservation. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3311-2_14

Download citation

Publish with us

Policies and ethics