Skip to main content

Chapter A2 Cancellous Bone

  • Chapter
  • First Online:
Handbook of Biomaterial Properties

Abstract

Cancellous bone (also referred to as trabecular bone or spongy bone) is a porous cellular solid consisting of platelike and rodlike struts called trabeculae. The size and arrangement of trabeculae vary among species and within regions of the skeleton and change with age. Average trabecular thickness can be as great as 300 μm but, in elderly human tissue, ranges from 100 to 200 μm [1]. The orientation of trabeculae within cancellous bone varies, resulting in considerable specimen-to-specimen heterogeneity. At the continuum level (specimens 3–5 mm in smallest dimension) the density of cancellous bone is measured as the mass of the specimen (wet after removing the marrow) divided by specimen volume and is referred to as the “apparent density.” The apparent density of human cancellous bone typically ranges from 0.05 to 1.1 g/cm3. The apparent density of cancellous bone is not to be confused with the “tissue density” which expresses the density of individual trabeculae. The volume fraction of human cancellous bone (expressed in the bone literature as BV/TV) ranges from 5 % to 60 %. The surface-to-volume ratio of human cancellous bone (BS/TV) is related to bone volume fraction in the following manner [2]:

$$ \frac{\mathrm{BS}}{\mathrm{TV}}=8.84{\left(\frac{\mathrm{BV}}{\mathrm{TV}}\right)}^{0.70} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE (2008) Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 23:223–235

    Article  Google Scholar 

  2. Fyhrie DP, Fazzalari NL, Goulet R, Goldstein SA (1993) Direct calculation of the surface-to-volume ratio for human cancellous bone. J Biomech 26:955–967

    Article  Google Scholar 

  3. Robinson RA (1975) Physicochemical structure of bone. Clin Orthop 53:263–315

    Google Scholar 

  4. Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:236–246

    Article  Google Scholar 

  5. Gong JK, Arnold JS, Cohn SH (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–332

    Article  Google Scholar 

  6. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59-A:954–962

    Article  Google Scholar 

  7. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Article  Google Scholar 

  8. Morgan EF, Yeh OC, Chang WC, Keaveny TM (2001) Nonlinear behavior of trabecular bone at small strains. J Biomech Eng 123:1–9

    Article  Google Scholar 

  9. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897–904

    Article  Google Scholar 

  10. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577

    Article  Google Scholar 

  11. Garrison JG, Gargac JA, Niebur GL (2011) Shear strength and toughness of trabecular bone are more sensitive to density than damage. J Biomech 44:2747–2754

    Article  Google Scholar 

  12. Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31:601–608

    Article  Google Scholar 

  13. Cook RB, Zioupos P (2009) The fracture toughness of cancellous bone. J Biomech 42:2054–2060

    Article  Google Scholar 

  14. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  Google Scholar 

  15. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  Google Scholar 

  16. Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147

    Article  Google Scholar 

  17. Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM (2004) The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng 126:677–684

    Article  Google Scholar 

  18. Wolfram U, Gross T, Pahr DH, Schwiedrzik J, Wilke HJ, Zysset PK (2012) Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed Mater 15:218–228

    Article  Google Scholar 

  19. Hernandez CJ, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29:74–78

    Article  Google Scholar 

  20. Bowman SM, Keaveny TM, Gibson LJ, Hayes WC, McMahon TA (1994) Compressive creep behavior of bovine trabecular bone. J Biomech 27:301–310

    Article  Google Scholar 

  21. Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39:1812–1818

    Article  Google Scholar 

  22. Haddock SM, Yeh OC, Mummaneni PV, Rosenberg WS, Keaveny TM (2004) Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech 37:181–187

    Article  Google Scholar 

  23. Morgan EF, Yeh OC, Keaveny TM (2005) Damage in trabecular bone at small strains. Eur J Morphol 42:13–21

    Article  Google Scholar 

  24. Hernandez CJ, Lambers FM, Widjaja J, Chapa C, Rimnac CM (2014) Quantitative relationships between microdamage and cancellous bone strength and stiffness. Bone 66:205–213

    Article  Google Scholar 

  25. Keaveny TM, Wachtel EF, Kopperdahl DL (1999) Mechanical behavior of human trabecular bone after overloading. J Orthop Res 17:346–353

    Article  Google Scholar 

  26. Lambers FM, Bouman AR, Rimnac CM, Hernandez CJ (2013) Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One 8, e83662

    Article  Google Scholar 

  27. Wang X, Niebur GL (2006) Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech 39:781–790

    Article  Google Scholar 

  28. Fyhrie DP, Schaffler MB (1994) Failure mechanisms in human vertebral cancellous bone. Bone 15:105–109

    Article  Google Scholar 

  29. Guo XE (2001) Mechanical properties of cortical bone and cancellous tissue. In: Cowin SC (ed) Bone Mechanics Handbook. CRC Press, Boca Raton, pp 10.11–10.23

    Google Scholar 

  30. Kim G, Cole JH, Boskey AL, Baker SP, van der Meulen MC (2014) Reduced tissue-level stiffness and mineralization in osteoporotic cancellous bone. Calcif Tissue Int 95:125–131

    Article  Google Scholar 

  31. Norman J, Shapter JG, Short K, Smith LJ, Fazzalari NL (2008) Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J Biomed Mater Res A 87:196–202

    Article  Google Scholar 

  32. Rho JY, Roy ME, Tsui TY, Pharr GM (1999) Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res 45:48–54

    Article  Google Scholar 

  33. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Hernandez .

Editor information

Editors and Affiliations

Additional Reading

Additional Reading

Cowin S. Bone Mechanics Handbook. In. 2 ed. Boca Raton: CRC Press; 2001.

This book provides a complete review of bone mechanical properties and interactions with bone cell biology.

Currey JD. Bones: Structure and Mechanics. Princeton, NJ, USA: Princeton University Press; 2002.

This is a review that includes thorough discussion of non-human bone mechanical properties and function.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hernandez, C.J. (2016). Chapter A2 Cancellous Bone. In: Murphy, W., Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3305-1_2

Download citation

Publish with us

Policies and ethics