Skip to main content

Posttranscriptional Regulation of PTEN by Competing Endogenous RNAs

  • Protocol
  • First Online:
PTEN

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1388))

Abstract

PTEN expression can be dysregulated in cancers via multiple mechanisms including genomic loss, epigenetic silencing, transcriptional repression, and posttranscriptional regulation by microRNAs. MicroRNAs are short, noncoding RNAs that regulate gene expression by binding to recognition sites on target transcripts. Recent studies have demonstrated that the competition for shared microRNAs between both protein-coding and noncoding transcripts represents an additional facet of gene regulation. Here, we describe in detail an integrated computational and experimental approach to identify and validate these competing endogenous RNA (ceRNA) interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4):289–301

    Article  CAS  PubMed  Google Scholar 

  2. Steck PA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362

    Article  CAS  PubMed  Google Scholar 

  3. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96(8):4240–4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  PubMed  Google Scholar 

  5. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100(4):387–390

    Article  PubMed  Google Scholar 

  6. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414

    Article  CAS  PubMed  Google Scholar 

  7. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    Article  CAS  PubMed  Google Scholar 

  8. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296

    CAS  PubMed  Google Scholar 

  9. Myers MP et al (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A 94(17):9052–9057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen WH et al (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170

    Article  CAS  PubMed  Google Scholar 

  11. Trotman LC et al (2003) Pten dose dictates cancer progression in the prostate. PLoS Biol 1(3):E59

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Cristofano A et al (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355

    Article  PubMed  Google Scholar 

  13. Suzuki A et al (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8(21):1169–1178

    Article  CAS  PubMed  Google Scholar 

  14. Podsypanina K et al (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96(4):1563–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174

    Article  CAS  PubMed  Google Scholar 

  18. Alimonti A et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42(5):454–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berger AH, Knudson AG, Pandolfi PP (2011) A continuum model for tumour suppression. Nature 476(7359):163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tay Y, Song SJ, Pandolfi PP (2013) The Lilliputians and the giant: an emerging oncogenic microRNA network that suppresses the PTEN tumor suppressor in vivo. Microrna 2(2):127–136

    Article  CAS  PubMed  Google Scholar 

  21. Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tay Y et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karreth FA et al (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147(2):382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee DY et al (2010) Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS One 5(10):e13599

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sumazin P et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karreth FA et al (2014) Pseudogenes as competitive endogenous RNAs: target prediction and validation. Methods Mol Biol 1167:199–212

    Article  PubMed  Google Scholar 

  29. Taylor BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piro RM et al (2011) An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. Eur J Hum Genet 19(11):1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park E, Maquat LE (2013) Staufen-mediated mRNA decay. Wiley Interdiscip Rev RNA 4(4):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cummins JM et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103(10):3687–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eichhorn SW et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56(1):104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447(7146):875–878

    Article  CAS  PubMed  Google Scholar 

  35. Cheloufi S et al (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cifuentes D et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shen Mynn Tan for critical reading of the manuscript. Y.T. was supported by a Singapore National Research Foundation Fellowship and a National University of Singapore President’s Assistant Professorship. P.P.P. was supported in part by NIH grants 1R01CA170158 and R01 CA82328.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yvonne Tay Ph.D. or Pier Paolo Pandolfi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tay, Y., Pandolfi, P.P. (2016). Posttranscriptional Regulation of PTEN by Competing Endogenous RNAs. In: Salmena, L., Stambolic, V. (eds) PTEN. Methods in Molecular Biology, vol 1388. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3299-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3299-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3297-9

  • Online ISBN: 978-1-4939-3299-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics