Skip to main content

Outpacing Infectious Disease: Mimicking the Host-Pathogen Microenvironment in Three-Dimensions

  • Chapter
Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells

Abstract

In the past decade, a paradigm shift has occurred from the use of conventional two-dimensional (2-D) monolayer cultures to organotypic three-dimensional (3-D) cell culture models for infectious disease research. Central to this effort has been the NASA-designed rotating wall vessel (RWV) bioreactor, which has enabled the generation of organotypic 3-D cell culture models derived from a variety of human tissues, including the small intestine, colon, lung, vaginal, bladder, and liver tissues. RWV-derived 3-D tissue culture models mimic key aspects of the differentiated structure and function of their respective in vivo parental tissues, including 3-D cytoarchitecture, barrier function, apical-basolateral polarity, apical secretion of mucins, and multicellular complexity. As a result, these 3-D cell culture models are attractive platforms to help bridge the gap between cell-based discoveries at the bench, and clinical translation.

This chapter provides an overview of RWV-derived 3-D organotypic models of human tissues, with an emphasis on mucosal models, that have been applied for infectious disease research. The characteristics of parental tissues that the 3-D models mimic are discussed, as well as new insights gained into both host and pathogen responses during their interactions. Highlighted models include: (a) 3-D monotypic and immunocompetent co-culture intestinal models for studying the enteric pathogen Salmonella enterica serovar Typhimurium, (b) 3-D monotypic and immunocompetent lung models to investigate host responses to the opportunistic pathogen Pseudomonas aeruginosa and its toxins, and (c) a 3-D vaginal model used to parallel host cytotoxic responses to an anti-HIV spermicide. Additional 3-D models derived from other human cell types and subsequently applied to study the host–pathogen interaction with bacterial, viral, and protozoan pathogens are also discussed.

The establishment, characterization, and validation of 3-D tissues generated using RWV bioreactor technology has offered researchers biologically meaningful human surrogates for expanding their knowledge regarding the in vivo infectious disease process in ways that are not possible with traditional flat 2-D monolayer cultures. Using in vitro models that mimic key in vivo features and host-pathogen responses will accelerate the development of therapeutic modalities to prevent and combat infectious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, J. P., Pierson, S. S., & Hughes, J. H. (1998). Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity. Aviation, Space, and Environmental Medicine, 69, 851–856.

    CAS  PubMed  Google Scholar 

  2. Nickerson, C. A., et al. (2001). Three-dimensional tissue assemblies: Novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infection and Immunity, 69(11), 7106–7120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alcantara Warren, C., et al. (2008). Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis. The Journal of Infectious Diseases, 198(1), 143–149.

    Article  PubMed  Google Scholar 

  4. Crabbé, A., et al. (2011). Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cellular Microbiology, 13(3), 469–481.

    Article  PubMed  CAS  Google Scholar 

  5. Radtke, A. L., et al. (2010). Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One, 5(12), e15750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Weirdt, R., et al. (2012). Glycerol supplementation enhances L. reuteri’s protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium. PLoS One, 7(5), e37116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Barrila, J., et al. (2015) Microgravity uniquely alters the host-pathogen interaction between human intestinal epithelial cells and Salmonella enterica serovar Typhimurium in 115th American Society for Microbiology General Meeting, New Orleans, LA.

    Google Scholar 

  8. David, J., Sayer, N. M., & Sarkar-Tyson, M. (2014). The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes and Infection, 16(9), 735–745.

    Article  PubMed  Google Scholar 

  9. GBD 2013 Mortality and Causes of Death Collaborators. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 385(9963), 117–171.

    Google Scholar 

  10. Barrila, J., et al. (2010). Organotypic 3D cell culture models: Using the rotating wall vessel to study host-pathogen interactions. Nature Reviews Microbiology, 8(11), 791–801.

    Article  CAS  PubMed  Google Scholar 

  11. Crabbé, A., Ledesma, M. A., & Nickerson, C. A. (2014). Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa. Pathogens and Disease, 71(1), 1–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Singh, B., et al. (2012). Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews, 36(6), 1122–1180.

    Article  CAS  PubMed  Google Scholar 

  13. Lopetuso, L. R., et al. (2014). The gastrointestinal microbiome – Functional interference between stomach and intestine. Best Practice & Research Clinical Gastroenterology, 28(6), 995–1002.

    Article  CAS  Google Scholar 

  14. Duerkop, B. A., Vaishnava, S., & Hooper, L. V. (2009). Immune responses to the microbiota at the intestinal mucosal surface. Immunity, 31(3), 368–376.

    Article  CAS  PubMed  Google Scholar 

  15. Bals, R., & Hiemstra, P. S. (2004). Innate immunity in the lung: How epithelial cells fight against respiratory pathogens. The European Respiratory Journal, 23(2), 327–333.

    Article  CAS  PubMed  Google Scholar 

  16. Kraehenbuhl, J. P., & Corbett, M. (2004). Immunology. Keeping the gut microflora at bay. Science, 303(5664), 1624–1625.

    Article  CAS  PubMed  Google Scholar 

  17. Ingber, D. E., & Tensegrity, I. I. (2003). How structural networks influence cellular information processing networks. Journal of Cell Science, 116(Pt 8), 1397–1408.

    Article  CAS  PubMed  Google Scholar 

  18. Ingber, D. E., & Tensegrity, I. (2003). Cell structure and hierarchical systems biology. Journal of Cell Science, 116(Pt 7), 1157–1173.

    Article  CAS  PubMed  Google Scholar 

  19. Ingber, D. E. (2003). Mechanobiology and diseases of mechanotransduction. Annals of Medicine, 35(8), 564–577.

    Article  PubMed  Google Scholar 

  20. Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: The ultimate regulator of breast epithelial function. Current Opinion in Cell Biology, 15(6), 753–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, R., Boudreau, A., & Bissell, M. J. (2009). Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer and Metastasis Reviews, 28(1–2), 167–176.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 22, 287–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hagios, C., Lochter, A., & Bissell, M. J. (1998). Tissue architecture: The ultimate regulator of epithelial function? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1370), 857–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211–224.

    Article  CAS  PubMed  Google Scholar 

  25. Schmeichel, K. L., & Bissell, M. J. (2003). Modeling tissue-specific signaling and organ function in three dimensions. Journal of Cell Science, 116(Pt 12), 2377–2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cukierman, E., Pankov, R., & Yamada, K. M. (2002). Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 14(5), 633–639.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada, K. M., & Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell, 130(4), 601–610.

    Article  CAS  PubMed  Google Scholar 

  28. Nickerson, C. A., & Ott, C. M. (2004). A new dimension in modeling infectious disease. ASM News, 70(4), 169–175.

    Google Scholar 

  29. Nickerson, C. A., Richter, E. G., & Ott, C. M. (2007). Studying host-pathogen interactions in 3-D: Organotypic models for infectious disease and drug development. Journal of Neuroimmune Pharmacology, 2(1), 26–31.

    Article  PubMed  Google Scholar 

  30. Mueller-Klieser, W. (1997). Three-dimensional cell cultures: From molecular mechanisms to clinical applications. The American Journal of Physiology, 273(4 Pt 1), C1109–C1123.

    CAS  PubMed  Google Scholar 

  31. Abbott, A. (2003). Biology’s new dimension. Nature, 424, 870–872.

    Article  CAS  PubMed  Google Scholar 

  32. Debnath, J., & Brugge, J. S. (2005). Modelling glandular epithelial cancers in three-dimensional cultures. Nature Reviews Cancer, 5(9), 675–688.

    Article  CAS  PubMed  Google Scholar 

  33. Roskelley, C. D., Desprez, P. Y., & Bissell, M. J. (1994). Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12378–12382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smalley, K. S., Lioni, M., & Herlyn, M. (2006). Life isn’t flat: Taking cancer biology to the next dimension. In Vitro Cellular & Developmental Biology. Animal, 42(8–9), 242–247.

    Article  CAS  Google Scholar 

  35. Freshney, R. I. (Ed.). (2010). Culture of animal cells: A manual of basic technique and specialized applications (6th ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  36. Selick, H. E., Beresford, A. P., & Tarbit, M. H. (2002). The emerging importance of predictive ADME simulation in drug discovery. Drug Discovery Today, 7(2), 109–116.

    Article  PubMed  Google Scholar 

  37. Guo, P., Weinstein, A. M., & Weinbaum, S. (2000). A hydrodynamic mechanosensory hypothesis for brush border microvilli. American Journal of Physiology. Renal Physiology, 279(4), F698–F712.

    CAS  PubMed  Google Scholar 

  38. Furness, J. B., Kunze, W. A., & Clerc, N. (1999). Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: Neural, endocrine, and immune responses. The American Journal of Physiology, 277(5 Pt 1), G922–G928.

    CAS  PubMed  Google Scholar 

  39. Castro, G. A., & Arntzen, C. J. (1993). Immunophysiology of the gut: A research frontier for integrative studies of the common mucosal immune system. The American Journal of Physiology, 265(4 Pt 1), G599–G610.

    CAS  PubMed  Google Scholar 

  40. Honer zu Bentrup, K., et al. (2006). Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes and Infection, 8(7), 1813–1825.

    Article  PubMed  CAS  Google Scholar 

  41. Carvalho, H. M., et al. (2005). A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli. Cellular Microbiology, 7(12), 1771–1781.

    Article  CAS  PubMed  Google Scholar 

  42. Darwin, K. H., & Miller, V. L. (1999). Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clinical Microbiology Reviews, 12(3), 405–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rastogi, D., Ratner, A. J., & Prince, A. (2001). Host-bacterial interactions in the initiation of inflammation. Paediatric Respiratory Reviews, 2(3), 245–252.

    Article  CAS  PubMed  Google Scholar 

  44. Galan, J. E. (2001). Salmonella interactions with host cells: Type III secretion at work. Annual Review of Cell and Developmental Biology, 17, 53–86.

    Article  CAS  PubMed  Google Scholar 

  45. Kuhle, V., & Hensel, M. (2004). Cellular microbiology of intracellular Salmonella enterica: Functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cellular and Molecular Life Sciences, 61(22), 2812–2826.

    Article  CAS  PubMed  Google Scholar 

  46. Pullinger, G. D., et al. (2007). Systemic translocation of Salmonella enterica serovar Dublin in cattle occurs predominantly via efferent lymphatics in a cell-free niche and requires type III secretion system 1 (T3SS-1) but not T3SS-2. Infection and Immunity, 75(11), 5191–5199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raffatellu, M., et al. (2005). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infection and Immunity, 73(1), 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baumler, A. J., et al. (1997). Synergistic effect of mutations in invA and lpfC on the ability of Salmonella typhimurium to cause murine typhoid. Infection and Immunity, 65(6), 2254–2259.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bueno, S. M., et al. (2010). Salmonella pathogenicity island 1 differentially modulates bacterial entry to dendritic and non-phagocytic cells. Immunology, 130(2), 273–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morgan, E., et al. (2004). Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Molecular Microbiology, 54(4), 994–1010.

    Article  CAS  PubMed  Google Scholar 

  51. Watson, P. R., et al. (1995). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infection and Immunity, 63(7), 2743–2754.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tenor, J. L., et al. (2004). Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions. Current Biology, 14(11), 1018–1024.

    Article  CAS  PubMed  Google Scholar 

  53. Santos, R. L., et al. (2001). Animal models of Salmonella infections: Enteritis versus typhoid fever. Microbes and Infection, 3(14–15), 1335–1344.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, S., et al. (2003). Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Infection and Immunity, 71(1), 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, J., et al. (2005). Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 289(1), G129–G137.

    Article  CAS  PubMed  Google Scholar 

  56. Ye, Z., et al. (2007). Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. The American Journal of Pathology, 171(3), 882–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, D., & Galan, J. (2001). Salmonella entry into host cells: The work in concert of type III secreted effector proteins. Microbes and Infection, 3(14–15), 1293–1298.

    Article  CAS  PubMed  Google Scholar 

  58. Clark, M. A., et al. (1996). Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion of cultured cells. Infection and Immunity, 64(10), 4363–4368.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rescigno, M., et al. (2001). Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology, 204(5), 572–581.

    Article  CAS  PubMed  Google Scholar 

  60. Murray, R. A., & Lee, C. A. (2000). Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: Evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infection and Immunity, 68(9), 5050–5055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu, Q., et al. (2008). Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. Journal of Clinical Microbiology, 46(4), 1330–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaiko, G. E., & Stappenbeck, T. S. (2014). Host-microbe interactions shaping the gastrointestinal environment. Trends in Immunology, 35(11), 538–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lozupone, C. A., et al. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Integrative HMP (iHMP) Research Network Consortium. (2014). The Integrative Human Microbiome Project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host & Microbe, 16(3), 276–289.

    Article  CAS  Google Scholar 

  65. Weizman, Z., Asli, G., & Alsheikh, A. (2005). Effect of a probiotic infant formula on infections in child care centers: Comparison of two probiotic agents. Pediatrics, 115(1), 5–9.

    PubMed  Google Scholar 

  66. Hurley, D., et al. (2014). Salmonella-host interactions – Modulation of the host innate immune system. Frontiers in Immunology, 5, 481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Behnsen, J., et al. (2015). Exploiting host immunity: The Salmonella paradigm. Trends in Immunology, 36(2), 112–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruby, T., et al. (2012). Salmonella’s long-term relationship with its host. FEMS Microbiology Reviews, 36(3), 600–615.

    Article  CAS  PubMed  Google Scholar 

  69. Carterson, A. J., et al. (2005). A549 lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infection and Immunity, 73(2), 1129–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Christensen, B. B., et al. (1998). Establishment of new genetic traits in a microbial biofilm community. Applied and Environmental Microbiology, 64, 2247–2255.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kang, B. H., et al. (1993). Intercellular adhesion molecule-1 expression on the alveolar epithelium and its modification by hyperoxia. American Journal of Respiratory Cell and Molecular Biology, 9(4), 350–355.

    Article  CAS  PubMed  Google Scholar 

  72. Engel, J., & Eran, Y. (2011). Subversion of mucosal barrier polarity by Pseudomonas aeruginosa. Frontiers in Microbiology, 2, 114.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fleiszig, S. M., et al. (1997). Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infection and Immunity, 65(7), 2861–2867.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Plotkowski, M. C., et al. (1999). Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. American Journal of Respiratory Cell and Molecular Biology, 20(5), 880–890.

    Article  CAS  PubMed  Google Scholar 

  75. Kazmierczak, B. I., Mostov, K., & Engel, J. N. (2004). Epithelial cell polarity alters Rho-GTPase responses to Pseudomonas aeruginosa. Molecular Biology of the Cell, 15(2), 411–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bucior, I., Mostov, K., & Engel, J. N. (2010). Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infection and Immunity, 78(3), 939–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heiniger, R. W., et al. (2010). Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin. Cellular Microbiology, 12(8), 1158–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bucior, I., Pielage, J. F., & Engel, J. N. (2012). Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathogens, 8(4), e1002616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pier, G. B. (2012). The challenges and promises of new therapies for cystic fibrosis. The Journal of Experimental Medicine, 209(7), 1235–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pier, G. B., et al. (1996). How mutant CFTR may contribute to Pseudomonas aeruginosa infection in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 154(4 Pt 2), S175–S182.

    Article  CAS  PubMed  Google Scholar 

  81. Morris, A. P., et al. (1994). Polarization-dependent apical membrane CFTR targeting underlies cAMP-stimulated Cl- secretion in epithelial cells. The American Journal of Physiology, 266(1 Pt 1), C254–C268.

    CAS  PubMed  Google Scholar 

  82. Loffing-Cueni, D., et al. (2001). Trafficking of GFP-tagged DeltaF508-CFTR to the plasma membrane in a polarized epithelial cell line. American Journal of Physiology. Cell Physiology, 281(6), C1889–C1897.

    CAS  PubMed  Google Scholar 

  83. Hartl, D., et al. (2012). Innate immunity in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 11(5), 363–382.

    Article  CAS  PubMed  Google Scholar 

  84. Tateda, K., et al. (2003). The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infection and Immunity, 71(10), 5785–5793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaufmann, G. F., et al. (2008). The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Molecular Immunology, 45(9), 2710–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hjelm, B. E., et al. (2010). Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biology of Reproduction, 82(3), 617–627.

    Article  CAS  PubMed  Google Scholar 

  87. Doerflinger, S. Y., Throop, A. L., & Herbst-Kralovetz, M. M. (2014). Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. The Journal of Infectious Diseases, 209(12), 1989–1999.

    Article  CAS  PubMed  Google Scholar 

  88. McGowin, C. L., et al. (2013). Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. The Journal of Infectious Diseases, 207(12), 1857–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Radtke, A. L., Quayle, A. J., & Herbst-Kralovetz, M. M. (2012). Microbial products alter the expression of membrane-associated mucin and antimicrobial peptides in a three-dimensional human endocervical epithelial cell model. Biology of Reproduction, 87(6), 132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. van de Wijgert, J. H., & Shattock, R. J. (2007). Vaginal microbicides: Moving ahead after an unexpected setback. AIDS, 21(18), 2369–2376.

    Article  PubMed  Google Scholar 

  91. Hiller, S. L., Moench, T., & Shattock, R. J. (2005). In vitro and in vivo: The story of nonoxynol 9. Journal of Acquired Immune Deficiency Syndromes, 39, 1–8.

    Article  Google Scholar 

  92. Ayehunie, S., et al. (2006). Organotypic human vaginal-ectocervical tissue model for irritation studies of spermicides, microbicides, and feminine-care products. Toxicology In Vitro, 20(5), 689–698.

    Article  CAS  PubMed  Google Scholar 

  93. Duray, P. H., et al. (2005). Invasion of human tissue ex vivo by Borrelia burgdorferi. The Journal of Infectious Diseases, 191(10), 1747–1754.

    Article  PubMed  Google Scholar 

  94. Sainz, B., Jr., TenCate, V., & Uprichard, S. L. (2009). Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virology Journal, 6, 103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Berto, A., et al. (2013). Replication of hepatitis E virus in three-dimensional cell culture. Journal of Virological Methods, 187(2), 327–332.

    Article  CAS  PubMed  Google Scholar 

  96. Goodwin, T. J., et al. (2013). Three-dimensional normal human neural progenitor tissue-like assemblies: A model of persistent varicella-zoster virus infection. PLoS Pathogens, 9(8), e1003512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Margolis, L. B., et al. (1997). Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Research and Human Retroviruses, 13(16), 1411–1420.

    Article  CAS  PubMed  Google Scholar 

  98. Long, J. P., & Hughes, J. H. (2001). Epstein-Barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. In Vitro Cellular & Developmental Biology. Animal, 37(4), 223–230.

    CAS  Google Scholar 

  99. Long, J. P., Pierson, S., & Hughes, J. H. (1999). Suppression of Epstein-Barr virus reactivation in lymphoblastoid cells cultured in simulated microgravity. In Vitro Cellular & Developmental Biology. Animal, 35(1), 49–54.

    Article  CAS  Google Scholar 

  100. Brinley, A. A., et al. (2013). Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. Journal of Cellular Biochemistry, 114(3), 616–624.

    Article  CAS  PubMed  Google Scholar 

  101. Cohrs, R. J., et al. (2008). Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. Journal of Medical Virology, 80(6), 1116–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mehta, S. K., et al. (2004). Stress-induced subclinical reactivation of varicella zoster virus in astronauts. Journal of Medical Virology, 72(1), 174–179.

    Article  PubMed  Google Scholar 

  103. Mehta, S. K., et al. (2013). Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine, 61(1), 205–209.

    Article  CAS  PubMed  Google Scholar 

  104. Mehta, S. K., & Pierson, D. L. (2007). Reactivation of latent herpes viruses in cosmonauts during a Soyuz taxi mission. Microgravity Science and Technology, XIX(5/6), 215–218.

    Google Scholar 

  105. Pierson, D. L., Mehta, S. K., & Stowe, R. P. (2007). Reactivation of latent herpes viruses in astronauts. In R. Ader (Ed.), Psychoneuroimmunology (pp. 851–868). New York: Academic.

    Chapter  Google Scholar 

  106. Pierson, D. L., et al. (2005). Epstein-Barr virus shedding by astronauts during space flight. Brain, Behavior, and Immunity, 19(3), 235–242.

    Article  CAS  PubMed  Google Scholar 

  107. Stowe, R. P., et al. (2001). Immune responses and latent herpesvirus reactivation in spaceflight. Aviation, Space, and Environmental Medicine, 72(10), 884–891.

    CAS  PubMed  Google Scholar 

  108. Stowe, R. P., Pierson, D. L., & Barrett, A. D. (2001). Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosomatic Medicine, 63(6), 891–895.

    Article  CAS  PubMed  Google Scholar 

  109. Stowe, R. P., et al. (2000). Stress-induced reactivation of Epstein-Barr virus in astronauts. Neuroimmunomodulation, 8(2), 51–58.

    Article  CAS  PubMed  Google Scholar 

  110. Cohen, J. I. (2000). Epstein-Barr virus infection. New England Journal of Medicine, 343(7), 481–492.

    Article  CAS  PubMed  Google Scholar 

  111. Smith, Y. C., et al. (2006). Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infection and Immunity, 74(1), 750–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Teo, A., et al. (2014). A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells. Biotechnology Letters, 36(5), 947–960.

    Article  CAS  PubMed  Google Scholar 

  113. Margolis, L., et al. (1999). Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. The Journal of Urology, 161(1), 290–297.

    Article  CAS  PubMed  Google Scholar 

  114. Hoz, L., et al. (2012). Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biology International, 36(2), 129–136.

    Article  CAS  PubMed  Google Scholar 

  115. Muhitch, J. W., et al. (2000). Characterization of aggregation and protein expression of bovine corneal endothelial cells as microcarrier cultures in a rotating-wall vessel. Cytotechnology, 32(3), 253–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Samuelson, L., & Gerber, D. A. (2013). Improved function and growth of pancreatic cells in a three-dimensional bioreactor environment. Tissue Engineering. Part C, Methods, 19(1), 39–47.

    Article  CAS  PubMed  Google Scholar 

  117. Sheyn, D., et al. (2010). The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: A bioinformatics study. Tissue Engineering. Part A, 16(11), 3403–3412.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Frith, J. E., Thomson, B., & Genever, P. G. (2010). Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Engineering. Part C, Methods, 16(4), 735–749.

    Article  CAS  PubMed  Google Scholar 

  119. Freed, L. E., Vunjak-Novakovic, G., & Langer, R. (1993). Cultivation of cell-polymer cartilage implants in bioreactors. Journal of Cellular Biochemistry, 51(3), 257–264.

    Article  CAS  PubMed  Google Scholar 

  120. Crabbe, A., et al. (2011). Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiology, 13, 469–481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A. Nickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crabbé, A., Barrila, J., Mark Ott, C., Nickerson, C.A. (2016). Outpacing Infectious Disease: Mimicking the Host-Pathogen Microenvironment in Three-Dimensions. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_5

Download citation

Publish with us

Policies and ethics