Skip to main content

The Self-Organization of Self-Injurious Behavior as Revealed through Temporal Pattern Analyses

  • Protocol
  • First Online:
Discovering Hidden Temporal Patterns in Behavior and Interaction

Part of the book series: Neuromethods ((NM,volume 111))

Abstract

Intentional acts of harm to self are among the most dramatic and disturbing behaviors exhibited by human beings and frequently exact a heavy toll in terms of the emotional and economic burden that must be borne by affected individuals, families, caregivers, and society. One major obstacle to understanding and treating self-injurious behavior (SIB) is the absence of adequate tools and methodologies to identify distinctive behavioral phenotypes or to quantify the complex presentation of SIB across varying time scales and environmental settings. Granted, there are increasingly sophisticated analytic techniques available to study behavior, but the vast majority of existing studies on SIB still rely on measures of frequencies or rates of SIB linked to a single environmental condition or other presumed contingencies. In contrast, our recent investigations of SIB among individuals with severe intellectual and developmental disabilities have employed temporal pattern analyses using the Theme™ program to explore the complex organizational dynamics underlying the presentation of SIB as recurrent patterns across time. Comprehensive behavioral and environmental events were recorded in situ, in real time, by trained, unobtrusive observers using The Observer®. The event codes and their associated times were then imported into Theme™, which was used to identify highly significant (i.e., nonrandom), recurrent, temporal patterns that were not constrained by implicit assumptions about the sequential ordering or hypothesized relations among the constituent events. Principal among our findings are that transitions to episodes of SIB are characterized by greater overall behavioral complexity and order within individuals; that self-injuring acts may serve as singular points that increase coherence within self-organizing patterns of behavior; that temporal patterns associated with SIB are highly correlated with basal beta-endorphin and adrenocorticotropic hormone levels across individuals; and that treatment with the opiate antagonist naltrexone may reduce the temporal patterning of SIB. The implication of these findings is that SIB can never be fully understood within a strictly linear conceptualization of “cause-and-effect” sequential dependencies. Instead, we suggest that SIB is dynamically regulated by “internal” processes which contribute to the emergence of complex, self-organizing patterns. If confirmed, these results may portend the development of innovative new behavioral or pharmacologic interventions designed to disrupt self-organizing regulatory processes, rather than simply focusing on putative antecedents or consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandman CA, Kemp AS (2011) Opioid antagonists may reverse endogenous opiate “dependence” in the treatment of self-injurious behavior. Pharmaceuticals 4:366–381

    Article  CAS  PubMed Central  Google Scholar 

  2. Schroeder SR, Oster-Granite ML, Thompson T (2002) Self-injurious behavior: gene-brain-behavior relationships. American Psychological Association, Washington, DC, USA

    Book  Google Scholar 

  3. Kemp AS, Fillmore P, Lenjavi M, Lyon M, Chicz-DeMet A, Touchette PE, Sandman CA (2008) Temporal patterns of self-injurious behavior correlate with stress hormone levels in the developmentally disabled. Psychiatry Res 157:181–189

    Article  CAS  PubMed  Google Scholar 

  4. Bodfish JW, Lewis MH (2002) Self-injury and comorbid behaviors in developmental, neurological, psychiatric, and genetic disorders. In: Schroeder SR, Oster-Granite ML, Thompson T (eds) Self-injurious behavior: gene-brain-behavior relationships. American Psychological Association, Washington, DC, pp 23–39

    Chapter  Google Scholar 

  5. Sandman CA, Touchette P (2002) Opioids and the maintenance of self-injurious behavior. In: Schroeder SR, Oster-Granite ML, Thompson T (eds) Self-injurious behavior: gene-brain-behavior relationships. American Psychological Association, Washington, DC, pp 191–204

    Chapter  Google Scholar 

  6. Sandman CA et al (2003) β-Endorphin and ACTH are dissociated after self-injury in adults with developmental disabilities. Am J Ment Retard 108:414–424

    Article  PubMed  Google Scholar 

  7. Thompson T et al (1994) Opioid antagonist effects on self-injury in adults with mental retardation: response form and location as determinants of medication effects. Am J Ment Retard 99:85–102

    CAS  PubMed  Google Scholar 

  8. Sandman CA et al (1993) Naltrexone reduces self-injury and improves learning. Exp Clin Psychopharmacol 1:242–258

    Article  Google Scholar 

  9. Claes L, Vandereycken W (2007) Self-injurious behavior: differential diagnosis and functional differentiation. Compr Psychiatry 48(2):137–144

    Article  PubMed  Google Scholar 

  10. Schroeder SR et al (2001) Self-injurious behavior: gene–brain–behavior relationships. Ment Retard Dev Disabil Res Rev 7:3–12

    Article  CAS  PubMed  Google Scholar 

  11. Emerson E et al (1996) Time-based lag sequential analysis and the functional assessment of challenging behaviour. J Intellect Disabil Res 40(Pt 3):260–274

    Article  PubMed  Google Scholar 

  12. Hall S, Oliver C, Murphy G (2001) Early development of self-injurious behavior: an empirical study. Am J Ment Retard 106(2):189–199

    Article  CAS  PubMed  Google Scholar 

  13. Sackett GP (1979) The lag sequential analysis of contingency and cyclicity in behavioral interaction research. In: Osofsky JD (ed) Handbook of infant development. Wiley and Sons, New York, NY, pp 623–649

    Google Scholar 

  14. Symons FJ et al (2001) Sequential analysis of the effects of naltrexone on the environmental mediation of self-injurious behavior. Exp Clin Psychopharmacol 9(3):269–276

    Article  CAS  PubMed  Google Scholar 

  15. Thompson T, Caruso M (2002) Self-injury: knowing what we're looking for. In: Schroeder SR, Oster-Granite ML, Thompson T (eds) Self-injurious behavior: gene-brain-behavior relationships. American Psychological Association, Washington, DC, pp 3–21

    Chapter  Google Scholar 

  16. Magnusson MS (1996) Hidden real-time patterns in intra- and inter-individual behavior: description and detection. Eur J Psychol Assess 12:112–123

    Article  Google Scholar 

  17. Magnusson MS (2000) Discovering hidden time patterns in behavior: T-patterns and their detection. Behav Res Methods Instrum Comput 32(1):93–110

    Article  CAS  PubMed  Google Scholar 

  18. Emerson E, Thompson S, Reeves D, Henderson D, Robertson J (1995) Descriptive analysis of multiple response topographies of challenging behavior across two settings. Res Dev Disabil 16:301–329

    Article  CAS  PubMed  Google Scholar 

  19. Marion SD, Touchette PE, Sandman CA (2003) Sequential analysis reveals a unique structure for self-injurious behavior. Am J Ment Retard 108:301–313

    Article  PubMed  Google Scholar 

  20. Kroeker R, Touchette PE, Engleman L, Sandman CA (2004) Quantifying temporal distributions of self-injurious behavior: defining bouts versus discrete events. Am J Ment Retard 109:1–8

    Article  PubMed  Google Scholar 

  21. Bakeman R, Gottman JM (1997) Observing interaction: an introduction to sequential analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Sandman CA, Kemp AS, Mabini C, Pincus D, Magnusson M (2012) The role of self-injury in the organization of behaviour. J Intellect Disabil Res 56:516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sandman CA et al (2000) Computerized-assessment of treatment effects among individuals with developmental disabilities. In: Thompson T, Felces D, Symons F (eds) Behavioral observations: technology and applications in developmental disabilities. Brookes Publishing Co, Baltimore, MA, pp 271–293

    Google Scholar 

  24. Hetrick WP et al (1991) ODAP: a stand-alone program for observational data acquisition. Behav Res Methods Instrum Comput 13:453–454

    Google Scholar 

  25. Sandman CA et al (2008) The role of proopiomelanocortin (POMC) in sequentially dependent self-injurious behavior. Dev Psychobiol 50:680–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sandman CA et al (2002) Disregulation of proopiomelanocortin and contagious maladaptive behavior. Regul Pept 108:179–185

    Article  CAS  PubMed  Google Scholar 

  27. Sandman CA, Spence MA, Smith M (1999) Proopiomelanocortin (POMC) disregulation and response to opiate blockers. Ment Retard Dev Disabil Res Rev 5:314–321

    Article  Google Scholar 

  28. Sandman CA et al (1997) Dissociation of POMC peptides after self-injury predicts responses to centrally acting opiate blockers. Am J Ment Retard 102:182–199

    Article  CAS  PubMed  Google Scholar 

  29. Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5, e1000314

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guastello SJ, Liebovitch LS (2009) Introduction to nonlinear dynamics and complexity. In: Guastello SJ, Koopmans M, Pincus D (eds) Chaos and complexity in psychology: the theory of nonlinear dynamical systems. Cambridge University Press, Cambridge, MA

    Google Scholar 

  31. Pincus D, Ortega D, Metten A (2010) Orbital decomposition for the comparison of multiple categorical time-series. In: Guastello SJ, Gregson R (eds) Nonlinear dynamical systems analysis for the behavioral sciences: real data. CRC Press, Boca Raton, FL

    Google Scholar 

  32. Pezard L, Nandrino JL (2001) Dynamic paradigm in psychopathology: “chaos theory”, from physics to psychiatry. Encéphale 27:260–268

    CAS  PubMed  Google Scholar 

  33. Pincus D, Metten A (2010) Nonlinear dynamics in biopsychosocial resilience. Nonlinear Dynamics Psychol Life Sci 14:253–280

    Google Scholar 

  34. Nixon MK, Cloutier PF, Aggarwal S (2002) Affect regulation and addictive aspects of repetitive self-injury in hospitalized adolescents. J Am Acad Child Adolesc Psychiatry 41:1333–1341

    Article  PubMed  Google Scholar 

  35. Sandman CA, Hetrick WP (1995) Opiate mechanisms in self-injury. Ment Retard Dev Disabil Res Rev 1:130–136

    Article  Google Scholar 

  36. Sandman CA et al (1991) Brief report: plasma beta-endorphin and cortisol levels in autistic patients. J Autism Dev Disord 21:83–87

    Article  CAS  PubMed  Google Scholar 

  37. Sandman CA, Kastin AJ (1990) Neuropeptide modulation of development and behavior: implications for psychopathology. In: Deutsch SI, Weizman A, Weizman R (eds) Application of basic neuroscience to child psychiatry. Plenum Press, New York, NY, pp 101–124

    Chapter  Google Scholar 

  38. Sandman CA, Barron JL, DeMet E, Chicz-DeMet A, Rothenburg S (1990) Opioid peptides and development: clinical implications. In: Koob GF, Strand FL (eds) A decade of neuropeptides, past, present and future. Annals of the New York Academy of Sciences, New York, NY, pp 91–107

    Google Scholar 

  39. Sandman CA et al (1990) Plasma B-endorphin levels in patients with self-injurious behavior and stereotypy. Am J Ment Retard 95:84–92

    CAS  PubMed  Google Scholar 

  40. Sandman CA (1988) Beta-endorphin disregulation in autistic and self-injurious behavior: a neurodevelopmental hypothesis. Synapse 2:193–199

    Article  CAS  PubMed  Google Scholar 

  41. Sandman CA et al (2000) Long-term effects of naltrexone on self-injurious behavior. Am J Ment Retard 105:103–117

    Article  CAS  PubMed  Google Scholar 

  42. Sandman CA, Barron JL, Colman H (1990) An orally administered opiate blocker, naltrexone, attenuates self-injurious behavior. Am J Ment Retard 95:93–102

    CAS  PubMed  Google Scholar 

  43. Sandman CA et al (1987) Influence of naloxone on brain and behavior of a self-injurious woman. Biol Psychiatry 22:899–906

    Article  CAS  PubMed  Google Scholar 

  44. Barron JL, Sandman CA (1985) Paradoxical excitement to sedative-hypnotics in mentally retarded clients. Am J Ment Defic 90:124–129

    CAS  PubMed  Google Scholar 

  45. Barron JL, Sandman CA (1984) Self-injurious behavior and stereotypy in an institutionalized mentally retarded population. Appl Res Ment Retard 5:499–511

    Article  CAS  PubMed  Google Scholar 

  46. Sandman CA et al (1983) Naloxone attenuates self-abusive behavior in developmentally disabled clients. Appl Res Ment Retard 4:5–11

    Article  CAS  PubMed  Google Scholar 

  47. Barron J, Sandman CA (1983) Relationship of sedative-hypnotic response to self-injurious behavior and stereotypy by mentally retarded clients. Am J Ment Defic 88:177–186

    CAS  PubMed  Google Scholar 

  48. Ernst M et al (1993) Plasma beta-endorphin levels, naltrexone, and haloperidol in autistic children. Psychopharmacol Bull 29(2):221–227

    CAS  PubMed  Google Scholar 

  49. Leboyer M et al (1994) Difference between plasma N- and C-terminally directed beta-endorphin immunoreactivity in infantile autism. Am J Psychiatry 151(12):1797–1801

    Article  CAS  PubMed  Google Scholar 

  50. Bouvard MP et al (1995) Low-dose naltrexone effects on plasma chemistries and clinical symptoms in autism: a double-blind, placebo-controlled study. Elsevier, Kidlington

    Google Scholar 

  51. Gillberg C (1995) Endogenous opioids and opiate antagonists in autism: brief review of empirical findings and implications for clinicians. Dev Med Child Neurol 37:239–245

    Article  CAS  PubMed  Google Scholar 

  52. Leboyer M et al (1999) Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol Psychiatry 45(2):158–163

    Article  CAS  PubMed  Google Scholar 

  53. Tiefenbacher S et al (2000) Physiological correlates of self-injurious behavior in captive, socially-reared rhesus monkeys. Psychoneuroendocrinology 25(8):799–817

    Article  CAS  PubMed  Google Scholar 

  54. Novak MA (2003) Self-injurious behavior in rhesus monkeys: new insights into its etiology, physiology, and treatment. Am J Primatol 59(1):3–19

    Article  PubMed  Google Scholar 

  55. Crockett CM et al (2007) Beta-endorphin levels in longtailed and pigtailed macaques vary by abnormal behavior rating and sex. Peptides 28(10):1987–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willemsen-Swinkels SHN, Buitelaar JK, Nijhof GJ, Van England H (1995) Failure of naltrexone hydrochloride to reduce self-injurious and autistic behavior in mentally retarded adults. Arch Gen Psychiatry 52:766–773

    Article  CAS  PubMed  Google Scholar 

  57. Casner JA, Weinheimer B, Gualtieri CT (1996) Naltrexone and self-injurious behavior: a retrospective population study. J Clin Psychopharmacol 16:389–394

    Article  CAS  PubMed  Google Scholar 

  58. Sandman CA (2009) Psychopharmacologic treatment of non-suicidal self-injury. In: Nock MK (ed) Understanding non-suicidal self-injury: current science and practice. American Psychological Association Press, Washington, DC, pp 291–322

    Google Scholar 

  59. Symons FJ, Thompson A, Rodriguez MC (2004) Self-injurious behavior and the efficacy of naltrexone treatment: a quantitative synthesis. Ment Retard Dev Disabil Res Rev 10:193–200

    Article  PubMed  Google Scholar 

  60. Pincus D, Eberle K, Walder CS, Kemp AS, Lenjavi M, Sandman CA (2014) The role of self-injury in behavioral flexibility and resilience. Nonlinear Dynamics Psychol Life Sci 18:277–296

    PubMed  Google Scholar 

  61. Guastello SJ, Koopmans M, Pincus D (eds) (2009) Chaos and complexity in psychology: theory of nonlinear dynamics. Cambridge University Press, New York, NY

    Google Scholar 

  62. Pincus D, Guastello SJ (2005) Nonlinear dynamics and interpersonal correlates of verbal turn-taking patterns in group therapy. Small Group Res 36:635–677

    Article  Google Scholar 

  63. Pincus D (2009) Self-organization in psychotherapy. In: Guastello SJ, Koopmans M, Pincus D (eds) Chaos and complexity in psychology: the theory of nonlinear dynamical systems. Cambridge University Press, Cambridge, MA

    Google Scholar 

  64. Kuppens P, Allen NB, Sheeber LB (2010) Emotional inertia and psychological maladjustment. Psychol Sci 21:984–991

    Article  PubMed  PubMed Central  Google Scholar 

  65. Katerndahl D, Wang CP (2007) Dynamic covariation of symptoms of anxiety and depression among newly-diagnosed patients with major depressive episode, panic disorder, and controls. Nonlinear Dynamics Psychol Life Sci 11:349–365

    PubMed  Google Scholar 

  66. Guastello SJ (2010) Orbital decomposition: identification of dynamical patterns in categorical data. In: Guastello SJ, Gregson R (eds) Nonlinear dynamical systems analysis for the behavioral sciences: real data. CRC Press, Boca Raton, FL

    Google Scholar 

  67. Pincus D, Ortega D, Metten A (2010) Orbital decomposition for the comparison of multiple categorical time-series. In: Guastello SJ, Gregson R (eds) Nonlinear dynamical systems analysis for the behavioral sciences: real data. CRC Press, Boca Raton, FL

    Google Scholar 

  68. Kauffman SA (1995) At home in the universe. Oxford University Press, New York, NY

    Google Scholar 

  69. Smith RG, Lerman DC, Iwata BA (1996) Self-restraint as positive reinforcement for self-injurious behavior. J Appl Behav Anal 29:99–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blindert HD, Hartridge CL, Gwadry FG (1995) Case study: controlling self-injurious escape behaviors. Behav Interv 10:173–179

    Article  Google Scholar 

  71. Durand VM, Carr EG (1987) Social influences on ‘self-stimulatory’ behaviour: analysis and treatment application. J Appl Behav Anal 20:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iwata BA, Roscoe EM, Zarcone JR, Richman DM (2002) Environmental determinants of self-injurious behaviour. American Psychological Association, Washington, DC

    Google Scholar 

  73. Hanley GP, Iwata BA, McCord BE (2003) Functional analysis of problem behaviour: a review. J Appl Behav Anal 36:147–185

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gleick J (1988) Chaos: making a new science. Penguin, New York, NY

    Google Scholar 

  75. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384

    Article  CAS  PubMed  Google Scholar 

  76. Poil SS, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K (2012) Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J Neurosci 32:9817–9823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva S (2013) Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci 110:3585–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thorn CA, Atallah H, Howe M, Graybiel AM (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66:781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  CAS  PubMed  Google Scholar 

  81. Graybiel AM, Mink JW (2009) The basal ganglia and cognition. In: Gazzaniga M (ed) The cognitive neurosciences IV. MIT Press, Cambridge, MA

    Google Scholar 

  82. Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–1161

    Article  CAS  PubMed  Google Scholar 

  83. Muehlmann AM, Lewis MH (2012) Abnormal repetitive behaviours: shared phenomenology and pathophysiology. J Intellect Disabil Res 56:427–440

    Article  CAS  PubMed  Google Scholar 

  84. Lewis MH, Kim SJ (2009) The pathophysiology of restricted repetitive behavior. J Neurodev Dis 1:114–132

    Article  Google Scholar 

  85. Blomeley CP, Bracci E (2011) Opioidergic interactions between striatal projection neurons. J Neurosci 31:13346–13356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wassum KM, Cely IC, Maidment NT, Balleine BW (2009) Disruption of endogenous opioid activity during instrumental learning enhances habit acquisition. Neuroscience 163:770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanislow CA, Pine DS, Quinn KJ, Kozak MJ, Garvey MA, Heinssen RK, Wang PS, Cuthbert BN (2010) Developing constructs for psychopathology research: research domain criteria. J Abnorm Psychol 4:631–639

    Article  Google Scholar 

  88. Morris SE, Cuthbert BN (2012) Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 14:29–37

    PubMed  PubMed Central  Google Scholar 

  89. Cuthbert BN, Insel TR (2013) Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 11:126

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jin Y, Potkin SG, Kemp AS, Huerta S, Alva G, Thai T, Carreon D, Bunney WE (2006) Therapeutic effects of individualized alpha-frequency transcranial magnetic stimulation (αTMS) on the negative symptoms of schizophrenia. Schizophr Bull 32:556–561

    Article  PubMed  Google Scholar 

  91. Jin Y, Kemp AS, Huang Y, Thai TM, Zhaorui L, Xu W, He H, Potkin SG (2012) Alpha EEG-guided transcranial magnetic stimulation (TMS) in schizophrenia. Brain Stimul 5:560–568

    Article  PubMed  Google Scholar 

  92. Sokhadze E, Baruth J, Tasman A, Mansoor M, Ramaswamy R, Sears L, Mathai G, El-Baz A, Casanova MF (2010) Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Appl Psychophysiol Biofeedback 35:147–161

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Kemp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kemp, A.S., Lenjavi, M.R., Touchette, P.E., Pincus, D., Magnusson, M.S., Sandman, C.A. (2016). The Self-Organization of Self-Injurious Behavior as Revealed through Temporal Pattern Analyses. In: Magnusson, M., Burgoon, J., Casarrubea, M. (eds) Discovering Hidden Temporal Patterns in Behavior and Interaction. Neuromethods, vol 111. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3249-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3249-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3248-1

  • Online ISBN: 978-1-4939-3249-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics