Skip to main content

Effects of High Pressure on Food Proteins

  • Chapter
  • First Online:
High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

Abstract

High-pressure modification of proteins involves changes in protein secondary, tertiary, and quaternary structures from the native state through intermediate states to the fully denatured state. High pressure changes protein structure primarily by rupturing or forming non-covalent bond-electronic interactions, hydrophobic interactions, and hydrogen bonds. High pressure also induces formation of new disulfide bonds stabilizing the denatured proteins or producing protein aggregation. Generally, high pressure decreases protein volume by compressing internal cavities and changing the solvation volume. However, the conditions for high pressure to denature or modify food proteins depend on the structure of individual proteins. Large numbers of disulfide bonds in a native protein helps that protein to withstand high-pressure denaturation. Temperature is a variable that along with pressure can be manipulated to either promote or retard protein denaturation. In addition to pressure intensity and holding time, the pH, ionic strength, and solvent conditions can greatly affect high-pressure modification of food proteins. Pressure-modified protein functional properties—solubility, gelation, emulsification, foaming, binding, coagulation, and water-holding capacity—can positively or negatively affect the organoleptic and nutritional quality of ingredients or food products. To improve food quality, modification of food proteins for desirable functional properties requires careful selection of pressure-treatment conditions or parameters (pressure intensity and holding time, temperature, pH, ionic strength, etc.). High pressure is a unique and approved tool to modify protein functional properties yet needs further exploration in areas of bioactive proteins and peptides and protein allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez PA, Ramaswamy HS, Ismail AA (2008) High pressure gelation of soy proteins: effect of concentration, pH and additives. J Food Eng 88:331–340

    Article  CAS  Google Scholar 

  • Angsupanich K, Ledward DA (1998) High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem 63:39–50

    Article  CAS  Google Scholar 

  • Anton M, Chapleau N, Beaumal V, Delepine S, de Lamballerie M (2001) Effect of high-pressure treatment on rheology of oil-in-water emulsions prepared with hen egg yolk. Innov Food Sci Emerg Technol 2:9–12

    Article  CAS  Google Scholar 

  • Aouzelleg A, Bull LA, Price NC, Kelly SM (2004) Molecular studies of pressure/temperature-induced structural changes in bovine β-lactoglobulin. J Sci Food Agric 84:398–404

    Article  CAS  Google Scholar 

  • Balny C, Masson P (1993) Effects of high pressure on proteins. Food Rev Int 9:611–628

    Article  CAS  Google Scholar 

  • Balny C, Mozhaev VV, Reinhard L (1997) Hydrostatic pressure and proteins: basic concepts and new data. Comp Biochem Physiol 116:299–304

    Article  Google Scholar 

  • Belloque J, Chicon R, López-Fandiňo R (2007) Unfolding and refolding of β-lactoglobulin subjected to high hydrostatic pressure at different pH values and temperature and its influence on proteolysis. J Agric Food Chem 55:5282–5288

    Article  CAS  Google Scholar 

  • Belloque J, López-Fandiňo R, Smith G (2000) A 1H-NMR study on the effect of high pressures on β-lactoglobulin. J Agric Food Chem 48:3906–3912

    Article  CAS  Google Scholar 

  • Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595:235–249

    Article  CAS  Google Scholar 

  • Bridgman PW (1914) The coagulation of albumin by pressure. J Biol Chem 19:511–512

    CAS  Google Scholar 

  • Camp JV, Huyghebaert A (1995a) A comparative rheological study of heat and high pressure induced whey protein gels. Food Chem 4:357–364

    Article  Google Scholar 

  • Camp JV, Huyghebaert A (1995b) High pressure-induce gel formation of a whey protein and haemoglobin protein concentrate. LWT-Food Sci Technol 28:111–117

    Article  Google Scholar 

  • Camp JV, Huyghebaert A (1996) High pressure-induced gel formation of haemoglobin and whey proteins at elevated temperatures. LWT-Food Sci Technol 29:49–57

    Article  Google Scholar 

  • Cheftel JC, Culioli J (1997) Effects of high pressure on meat: a review. Meat Sci 3:211–236

    Article  Google Scholar 

  • Chicon R, Belloque J, Alonso E, López-Fandiňo R (2008a) Immunoreactivity and digestibility of high-pressure-treated whey proteins. Int Dairy J 18:367–376

    Article  CAS  Google Scholar 

  • Chicon R, Belloque J, Alonso E, Martin-Alvarez J, López-Fandiňo R (2008b) Hydrolysis under high hydrostatic pressure as means to reduce the binding of β-lactoglobulin to immunoglobulin E from human sera. J Food Prot 71:1453–1459

    CAS  Google Scholar 

  • Chicon R, Belloque J, Alonso E, López-Fandiňo R (2009) Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloids 23:593–599

    Article  CAS  Google Scholar 

  • Considine T, Patel HA, Singh H, Creamer LK (2005) Influence of binding of sodium dodecyl sulfate, all-trans-retinol, palmitate, and 8-anilino-1-naphthalenesulfonate on the pressure-Induced unfolding and aggregation of β-lactoglobulin B. J Agric Food Chem 53:8010–8018

    Article  CAS  Google Scholar 

  • Considine T, Patel HA, Singh H, Creamer LK (2007) Influence of binding conjugated linoleic acid and myristic acid on the heat- and high-pressure-induced unfolding and aggregation of β-lactoglobulin B. Food Chem 102:1270–1280

    Article  CAS  Google Scholar 

  • Crehan CM, Troy DJ, Buckley DJ (2000) Effects of salt level and high hydrostatic pressure processing on frankfurters formulated with 1.5 and 2.5% salt. Meat Sci 55:123–130

    Article  CAS  Google Scholar 

  • Damodaran S (1988) Interrelationship of molecular and functional properties of food proteins. In: Kinsella JE, Soucie WG (eds) Food proteins. American Oil Chemists’ Society, Champaign, IL, pp 21–52

    Google Scholar 

  • Damodaran S (1994) Structure-function relationship of food proteins. In: Hettiarachchy NS, Ziegler GR (eds) Protein functionality in food systems. Dekker, New York, pp 1–37

    Google Scholar 

  • Damodaran S (1996) Amino acids, peptides, and proteins. In: Fennema OR (ed) Food chemistry. Dekker, New York, pp 321–430

    Google Scholar 

  • Elgasim EA, Kennick WH (1980) Effects of pressurization of prerigor beef muscles on protein quality. J Food Sci 45:1122–1124

    Article  Google Scholar 

  • Fernández-Martin F, Cofrades S, Jiménez Colmenero J (2002) Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Sci 61:15–23

    Article  Google Scholar 

  • Fink AL, Calciano LJ, Goto Y, Kuroisu T, Palleros DR (1994) Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33:12504–12511

    Article  CAS  Google Scholar 

  • Frye KJ, Royer CA (1998) Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Protein Sci 7:2217–2222

    Article  CAS  Google Scholar 

  • Funtenberger S, Dumay E, Cheftel JC (1995) Pressure-induced aggregation of β-lactoglobulin in pH 7.0 buffers. Lebensm Wiss Technol 28:410–418

    Article  CAS  Google Scholar 

  • Funtenberger S, Dumay E, Cheftel JC (1997) High pressure promotes β-lactoglobulin aggregation through SH/S-S interchange reactions. J Agric Food Chem 45:912–921

    Article  CAS  Google Scholar 

  • Galazka VB, Dickinson E, Ledward DA (1996a) Effect of high pressure on the emulsifying behaviour of β-lactoglobulin. Food Hydrocolloids 10:213–219

    Article  CAS  Google Scholar 

  • Galazka VB, Dickinson E, Ledward DA (2000a) Emulsifying properties of ovalbumin in mixtures with sulphated polysaccharides: effect of pH, ionic strength, heat, and high-pressure treatment. J Sci Food Agric 80:1219–1229

    Article  CAS  Google Scholar 

  • Galazka VB, Dickinson E, Ledward DA (2000b) Influence of high pressure processing on protein solutions and emulsions. Curr Opin Colloid Interface Sci 5:182–187

    Article  CAS  Google Scholar 

  • Galazka VB, Ledward DA, Dickinson E, Langley KR (1995) High pressure effects on emulsifying behavior of whey protein concentration. J Food Sci 60:1341–1343

    Article  CAS  Google Scholar 

  • Galazka VB, Ledward DA, Dickinson E, Langley KR (1996b) High pressure effects on emulsifying behavior of whey protein concentrate. J Food Sci 60:1341–1343

    Article  Google Scholar 

  • Gomez-Estaca J, Gomez-Guillen MC, Montero P (2007) High pressure effects on the quality and preservation of cold-smoked dolphinfish (Coryphaena hippurus) fillets. Food Chem 102:1250–1259

    Article  CAS  Google Scholar 

  • Gross M, Jaenicke R (1994) Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630

    Article  CAS  Google Scholar 

  • Han IH, Swanson BG, Baik BK (2007) Protein digestibility of selected legumes treated with ultrasound and high hydrostatic pressure during soaking. Cereal Chem 84:518–521

    Article  CAS  Google Scholar 

  • Hawley SA (1971) Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–2442

    Article  CAS  Google Scholar 

  • Hayakawa I, Linko YY, Linko P (1996) Mechanism of high pressure denaturation of proteins. LWT-Food Sci Technol 29:756–762

    Article  CAS  Google Scholar 

  • Hayashi R, Kawamura Y, Nakasa T, Okinaka O (1989) Application of high pressure to food processing: pressurization of egg white and yolk, and properties of gels formed. Agric Biol Chem (Tokyo) 51:2935–2939

    Article  Google Scholar 

  • He JS, Azuma N, Yang H (2010) Effects of pH and ionic strength on the rheology and microstructure of a pressure-induced whey protein gel. Int Dairy J 20:89–95

    Article  CAS  Google Scholar 

  • He JS, Ruan K (2009) Kinetics of phase separation during pressure-induced gelation of a whey protein isolate. Food Hydrocolloids 23:1729–1733

    Article  CAS  Google Scholar 

  • Hendrickx M, Ludikhuyze L, Van den Broeck I, Weemaes C (1998) Effects of high pressure on enzymes related to food quality. Trends Food Sci Technol 9:197–203

    Article  CAS  Google Scholar 

  • Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11:1–21

    Article  CAS  Google Scholar 

  • Heremans K, Smeller L (1998) Protein structure and dynamics at high pressure. Biochim Biophys Acta 1386:353–370

    Article  CAS  Google Scholar 

  • Huppertz T, Fox PF, Kelly A (2004) High pressure treatment of bovine milk: effects on casein micelles and whey proteins. J Dairy Sci 71:97–106

    CAS  Google Scholar 

  • Huppertz T, Hinz K, Zobrist MR, Uniacke T, Kelly AL, Fox PF (2005) Effects of high pressure treatment on the rennet coagulation and cheese-making properties of heated milk. Innov Food Sci Emerg Technol 6:279–285

    Article  CAS  Google Scholar 

  • Iametti S, Transidico P, Bonomi F, Vecchino G, Pittia P, Rovere P, Dall'Aglio G (1997) Molecular modification of β-lactoglobulin upon exposure to high pressure. J Agric Food Chem 45:23–29

    Article  CAS  Google Scholar 

  • Ibanoglu E, Karatas S (2001) High pressure effect on foaming behaviour of whey protein isolate. J Food Eng 47:31–36

    Article  Google Scholar 

  • Iwasaki T, Norshiroya K, Saitoh N, Okano K, Yamamoto K (2006) Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chem 95:474–483

    Article  CAS  Google Scholar 

  • Jiménez Colmenero J, Carballo J, Fernández P, Barreto G, Solas MT (1997) High-pressure-induced changes in the characteristics of low-fat and high-fat sausages. J Sci Food Agric 75:61–66

    Article  Google Scholar 

  • Jiménez Colmenero J, Fernández P, Carballo J, Fernández-Martin F (1998) High-pressure-cooked low-fat pork and chicken batters as affected by salt levels and cooking temperature. J Food Sci 63:656–659

    Article  Google Scholar 

  • Kanno C, Mu TH, Hagiwara T, Ametani M, Azuma N (1998) Gel formation from industrial milk whey proteins under hydrostatic pressure: effect of hydrostatic pressure and protein concentration. J Agric Food Chem 46:417–424

    Article  CAS  Google Scholar 

  • Kitabatake N, Kinekawa Y-I (1998) Digestibility of bovine milk whey protein and β-lactoglobulin in vitro and in vivo. J Agric Food Chem 46:4917–4923

    Article  CAS  Google Scholar 

  • Knorr D (1993) Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol 47:156–161

    Google Scholar 

  • Knorr D, Heinz V, Buckow R (2006) High pressure application for food biopolymers. Biochim Biophys Acta 1764:619–631

    Article  CAS  Google Scholar 

  • Kühn J, Considine T, Singh H (2006) Interactions of milk proteins and volatile flavor compounds: implications in the development of protein foods. J Food Sci 71:2006

    Article  CAS  Google Scholar 

  • Kühn J, Considine T, Singh S (2008) Binding of flavor compounds and whey protein isolate as affected by heat and high pressure treatments. J Agric Food Chem 56:10218–10224

    Article  CAS  Google Scholar 

  • Kuwata K, Li H, Yamada H, Batt CA, Goto Y, Akasaka K (2001) High pressure NMR reveals a variety of fluctuating conformers in α-lactoglobulin. J Mol Biol 305:1073–1083

    Article  CAS  Google Scholar 

  • Lakshmanan R, Parkinson JA, Piggott JR (2007) High-pressure processing and water-holding capacity of fresh and cold-smoked salmon (Salmo salar). Lebensm Wiss Technol 40:544–551

    Article  CAS  Google Scholar 

  • Lee W, Clark S, Swanson BG (2006) Functional properties of high hydrostatic pressure-treated whey protein. J Food Process Preserv 30:488–501

    Article  CAS  Google Scholar 

  • Lim SY, Swanson BG, Clark S (2008a) High hydrostatic pressure modification of whey protein concentrate for improved functional properties. J Dairy Sci 91:1299–1307

    Article  CAS  Google Scholar 

  • Lim SY, Swanson BG, Ross CF, Clark S (2008b) High hydrostatic pressure modification of whey protein concentrate for improved body and texture of low-fat ice cream. J Dairy Sci 91:1308–1316

    Article  CAS  Google Scholar 

  • Liu X, Powers JR, Swanson BG, Hill HH, Clark S (2005a) High hydrostatic pressure affects flavor-binding properties of whey protein concentrate. J Food Sci 70:C581–C585

    Article  CAS  Google Scholar 

  • Liu X, Powers JR, Swanson BG, Hill HH, Clark S (2005b) Modification of whey protein concentrate hydrophobicity by high hydrostatic pressure. Innov Food Sci Emerg Technol 6:310–317

    Article  CAS  Google Scholar 

  • López-Exposito I, Chicon R, Belloque J, Recio I, Alonso E, López-Fandiňo R (2008) Changes in the ovalbumin proteolysis profile by high pressure and its effect on IgG and IgE binding. J Agric Food Chem 56:11809–11816

    Article  CAS  Google Scholar 

  • López-Fandiňo R (2006) High pressure-induced changes in milk proteins and possible applications in dairy technology. Int Dairy J 16:1119–1131

    Article  CAS  Google Scholar 

  • López-Fandiňo R, Carrascosa AV, Olano A (1996) The effects of high pressure on whey protein denaturation and cheese-making properties of raw milk. J Dairy Sci 79:929–936

    Article  Google Scholar 

  • López-Fandiňo R, Olano A (1998) Effects of high pressure combined with moderate temperatures on the rennet coagulation properties of milk. Int Dairy J 8:623–627

    Article  Google Scholar 

  • López-Fandiňo R, Ramos M, Olano A (1997) Rennet coagulation of milk subjected to high pressure. J Agric Food Chem 45:3233–3237

    Article  Google Scholar 

  • Low PS, Somero GN (1975) Pressure effects on enzyme structure and function vitro and under simulated in vivo conditions. Comp Biochem Physiol 52:67–74

    Article  CAS  Google Scholar 

  • Lullien-Pellerin V, Balny C (2002) High-pressure as a tool to study some proteins’ properties: conformational modification, activity and oligomeric dissociation. Innov Food Sci Emerg Technol 3:209–221

    Article  CAS  Google Scholar 

  • Macfarlane JJ (1974) Pressure-induced solubilization of meat proteins in saline solution. J Food Sci 39:542–547

    Article  Google Scholar 

  • Macfarlane JJ, Mckenzie IJ (1984) Binding of comminuted meat: effect of high pressure. Meat Sci 10:307–320

    Article  CAS  Google Scholar 

  • Messens W, Van Camp J, Huyghebaert A (1997) The use of high pressure to modify the functionality of food proteins. Trends Food Sci Technol 8:107–112

    Article  CAS  Google Scholar 

  • Molina E, Papadopoulou A, Ledward DA (2001) Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids 15:263–269

    Article  CAS  Google Scholar 

  • Mor-Mur M, Yuste J (2003) High pressure processing applied to cooked sausage manufacture: physical properties and sensory analysis. Meat Sci 65:1187–1191

    Article  CAS  Google Scholar 

  • Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins Struct Funct Genet 24:81–91

    Article  CAS  Google Scholar 

  • Nakai S, Li-Chan ECY (1993) Recent advances in structure and function of food protein: QSAR approach. Crit Rev Food Sci Nutr 33:477–499

    Article  CAS  Google Scholar 

  • Needs E, Stenning RA, Gill AL, Ferragut V, Rich GT (2000) High-pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation. J Dairy Sci 67:31–42

    CAS  Google Scholar 

  • Nielsen SS, Deshpande SS, Hermodson MA, Scott MP (2002) Comparative digestibility of legume storage proteins. J Agric Food Chem 36:896–902

    Article  Google Scholar 

  • Offer G, Trinick J (1983) On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci 8:245–281

    Article  CAS  Google Scholar 

  • Papiz MZ, Sawyer L, Eliopoulos EF, North ACT, Findlay JBC, Sivaprasadarao R, Jones TA, Newcomer ME, Kraulis PJ (1986) The structure of β-lactoglobulin and its similarity to plasma retinol binding protein. Nature (London) 324:383–385

    Article  CAS  Google Scholar 

  • Penas E, Prestamo G, Gomez R (2004) High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chem 85:641–648

    Article  CAS  Google Scholar 

  • Penas E, Prestamo G, Polo F, Gomez R (2006a) Enzymatic proteolysis, under high pressure of soybean whey: analysis of peptides and the allergen Gly m 1 in the hydrolysates. Food Chem 99:569–573

    Article  CAS  Google Scholar 

  • Penas E, Restani P, Ballabio C, Prestamo G, Fiocchi A, Gomez R (2006b) Assessment of the residual immunoreactivity of soybean whey hydrolysates obtained by combined enzymatic proteolysis and high pressure. Eur Food Res Technol 222:286–290

    Article  CAS  Google Scholar 

  • Pittia P, Wilde PJ, Husband FA, Clark DS (1996) Functional and structural properties of β-lactoglobulin as affected by high pressure treatment. J Food Sci 61:1123–1128

    Article  CAS  Google Scholar 

  • Ptitisyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  Google Scholar 

  • Puppo C, Chapleau N, Speroni F, de Lamballerie-Anton M, Michel F, Anon C, Anton M (2004) Physicochemical modifications of high-pressure-treated soybean protein isolates. J Agric Food Chem 52:1564–1571

    Article  CAS  Google Scholar 

  • Puppo MC, Beaumal V, Chapleau N, Speroni F, de Lamballerie M, Anon MC, Anton M (2008) Physicochemical and rheological properties of soybean protein emulsions processed with a combined temperature/high-pressure treatment. Food Hydrocolloids 22:1079–1089

    Article  CAS  Google Scholar 

  • Puppo MC, Beaumal V, Speroni F, de Lamballerie M, Anon MC, Anton M (2011) β-Conglycinin and glycinin soybean protein emulsions treated by combined temperature-high-pressure treatment. Food Hydrocolloids 25:389–397

    Article  CAS  Google Scholar 

  • Puppo MC, Speroni F, Chapleau N, de Lamballerie M, Anon MC, Anton M (2005) Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids 19:289–296

    Article  CAS  Google Scholar 

  • Quiros A, Chicon R, Recio I, Lopez-Fandino R (2007) The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chem 104:1734–1739

    Article  CAS  Google Scholar 

  • Rodiles-López JO, Jaramillo-Flores ME, Gutierrez-López GF, Hernandez-Arana A, Fosado-Quiroz RE, Barbosa-Canovas GV, Hernandez-Sanchez H (2008) Effect of high hydrostatic pressure on bovine α-lactalbumin functional properties. J Food Eng 87:363–370

    Article  Google Scholar 

  • Royer CA (2002) Revisiting volume changes in pressure-induced protein unfolding. Biochimia et Biophysica Acta 1595:201–209

    Article  CAS  Google Scholar 

  • Sarma R, Paul S (2012) The effect of pressure on the hydration structure around hydrophobic solute: a molecular dynamics simulation study. J Chem Phys 136:114510-1–11450-10

    Article  CAS  Google Scholar 

  • Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochim Biophys Acta 1482:136–148

    Article  CAS  Google Scholar 

  • Scharnagl C, Reif M, Friedrich J (2005) Stability of proteins: temperature, pressure and the role of the solvent. Biochim Biophys Acta 1947:187–213

    Article  CAS  Google Scholar 

  • Sikes AL, Tobin AB, Tume RK (2009) Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innov Food Sci Emerg Technol 10:405–412

    Article  CAS  Google Scholar 

  • Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595:11–29

    Article  CAS  Google Scholar 

  • Smeller L, Rubens P, Heremans K (1999) Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin. Biochemistry 38:3816–3820

    Article  CAS  Google Scholar 

  • Smith D, Galazka VB, Wellner N, Sumner IG (2000) High pressure unfolding of ovalbumin. Int J Food Sci Technol 35:361–370

    Article  CAS  Google Scholar 

  • Speroni F, Beaumal V, de Lamballerie M, Anton M, Anon MC, Puppo MC (2009) Gelation of soybean proteins induced by sequential high-pressure and thermal treatments. Food Hydrocolloids 23:1433–1442

    Article  CAS  Google Scholar 

  • Stapelfeldt H, Skibsted LH (1999) Pressure denaturation and aggregation of β-lactoglobulin studied by intrinsic fluorescence depolarization, Rayleigh scattering, radiationless energy transfer and hydrophobic fluoroprobing. J Dairy Res 66:545–558

    Article  CAS  Google Scholar 

  • Sun XG, Holley RA (2010) High hydrostatic pressure effects on the texture of meat and meat products. J Food Sci 75:R17–R23

    Article  CAS  Google Scholar 

  • Suzuki K, Miyagawa Y, Suzuki C (1963) Protein denaturation under high pressure. Measurement of turbidity of isoelectric ovalbumin and horse serum albumin under high pressure. Arch Biochem Biophys 101:225–228

    Article  CAS  Google Scholar 

  • Tang CH, Ma CY (2009) Effects of high pressure treatment on aggregation and structural properties of soy protein isolate. LWT-Food Sci Technol 42:606–611

    Article  CAS  Google Scholar 

  • Tavel L, Moreau C, Bouhallab S, Li-Chan ECY, Guichard E (2010) Interactions between aroma compounds and β-lactoglobulin in the heat-induced molten globule state. Food Chem 119:1550–1556

    Article  CAS  Google Scholar 

  • Tedford LA, Schaschke CJ (2000) Induced structural change of β-lactoglobulin by combined pressure and temperature. Biochem Eng J 5:73–76

    Article  CAS  Google Scholar 

  • Torrezan R, Tham WP, Bell AE, Frazier RA, Cristianini M (2007) Effects of high pressure on functional properties of soy protein. Food Chem 104:140–147

    Article  CAS  Google Scholar 

  • Uversky VN (1997) Diversity of equilibrium compact forms of denatured globular proteins. Protein Pept Lett 4:355–367

    CAS  Google Scholar 

  • Van Camp JV, Messens W, Clement J, Huyghebaert A (1997a) Influence of pH and calcium chloride on the high-pressure-induced aggregation of a whey protein concentrate. J Agric Food Chem 45:1600–1607

    Article  Google Scholar 

  • Van Camp JV, Messens W, Clement J, Huyghebaert A (1997b) Influence of pH and sodium chloride on the high pressure-induced gel formation of a whey protein concentrate. Food Chem 60:417–424

    Article  Google Scholar 

  • Van de Ven C, Courvoisier C, Matser A (2007) High pressure versus heat treatment for pasteurisation and sterilisation of model emulsions. Innov Food Sci Emerg Technol 8:230–236

    Article  CAS  Google Scholar 

  • Van der Plancken I (2005) Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment. J Agric Food Chem 53:5726–5733

    Article  CAS  Google Scholar 

  • Van der Plancken I, Loey AV, Hendrickx ME (2005) Combined effect of high pressure and temperature on selected properties of egg white proteins. Innov Food Sci Emerg Technol 2005:11–20

    Article  CAS  Google Scholar 

  • Van der Plancken IV, Loey AV, Hendrickx ME (2007) Foaming properties of egg white proteins affected by heat or high pressure treatment. J Food Eng 78:1410–1426

    Article  CAS  Google Scholar 

  • Vilela RM, Landis LC, Chan HM, Azadi B, Kubow S (2006) High hydrostatic pressure enhances whey protein digestibility to generate whey peptides that improve glutathione status in CFTR-deficient lung epithelial cells. Mol Nutr Food Res 50:1013–1029

    Article  CAS  Google Scholar 

  • Visschers RW, de Jongh HHJ (2005) Disulphide bond formation in food protein. aggregation and gelation. Biotechnol Adv 23:75–80

    Article  CAS  Google Scholar 

  • Wada S, Ogawa Y (1996) High pressure effects on fish lipid degradation: myoglobin change and water holding capacity. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology. Elsevier, Amsterdam, pp 351–356

    Google Scholar 

  • Walker MK, Farkas DF, Anderson SR, Meunier-Goddik L (2004) Effects of high-pressure processing at low temperature on the molecular structure and surface properties of β-lactoglobulin. J Agric Food Chem 52:8230–8235

    Article  CAS  Google Scholar 

  • Wang XS, Tang CH, Li BS, Yang XQ, Li L, Ma CY (2008) Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloids 22:560–567

    Article  CAS  Google Scholar 

  • Weber G, Drickamer HG (1983) The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys 16:89–112

    Article  CAS  Google Scholar 

  • Wu SY, Perez MD, Puyol P, Sawyer L (1999) β-Lactoglobulin binds palmitate within its central cavity. J Biotechnol Chem 274:170–174

    CAS  Google Scholar 

  • Yang J, Dunker AK, Powers JR, Clark S, Swanson BG (2001) β-Lactoglobulin molten globule induced by high pressure. J Agric Food Chem 49:3236–3243

    Article  CAS  Google Scholar 

  • Yang J, Powers JR, Clark S, Dunker AK, Swanson BG (2002) Hydrophobic probe binding of β-lactoglobulin in the native and molten globule state induced by high pressure as affected by pH, KIO3 and N-ethylmaleimide Journal of Agricultural and Food Chemistry 50

    Google Scholar 

  • Yang J, Powers JR, Clark S, Dunker AK, Swanson BG (2003) Ligand and flavor binding functional properties of β-lactoglobulin in the molten globule state induced by high pressure. J Food Sci 68:444–452

    Article  CAS  Google Scholar 

  • Yin SW, Tang CH, Wen QB, Yang XQ, Lin L (2008) Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment. Food Chem 110:938–945

    Article  CAS  Google Scholar 

  • Zeece M, Huppertz T, Kelly A (2008) Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innov Food Sci Emerg Technol 9:62–69

    Article  CAS  Google Scholar 

  • Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12:42–174228

    Article  Google Scholar 

  • Zobrist MR, Huppertz T, Uniacke T, Fox PF, Kelly A (2005) High-pressure-induced changes in the rennet coagulation properties of bovine milk. Int Dairy J 15:655–662

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, J., Powers, J.R. (2016). Effects of High Pressure on Food Proteins. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_18

Download citation

Publish with us

Policies and ethics