Skip to main content

High-Pressure Effects on Viruses

  • Chapter
  • First Online:
High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

Abstract

This chapter starts with brief reviews of high-pressure processing with regard to its history, advantages for use as a food processing technology, and basic description of the processing parameters. It also surveys viral food safety along with the biochemistry and pathology of foodborne infectious viruses, most especially norovirus, hepatitis A, and Aichi virus. The chapter further delves into pressure inactivation kinetics of viruses and describes the effects of treatment temperatures and food composition found in the literature. Another highlighted subject is the potential use of viral vaccines produced by pressure treatment that first arose in 1956 with investigation of pressure inactivation of poliomyelitis virus with subsequent measurement of immunogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MR, Moss MO (2000) Food microbiology. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Ang LH (1998) An outbreak of viral gastroenteritis associated with eating raw oysters. Commun Dis Public Health 1:38–40

    CAS  Google Scholar 

  • Arroyo G, Sanz PD, Prestamo G (1999) Response to high-pressure, low-temperature treatment in vegetables: determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. J Appl Microbiol 86:544–556

    Article  CAS  Google Scholar 

  • Atmar RL, Estes MK (2001) Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev 14:15–37

    Article  CAS  Google Scholar 

  • Basset J, Lépine P, Chaumont L (1956) Effets des hautes pressions sur le virus de la poliomyélite (souche Lansing). Ann Inst Pasteur (Paris) 90:575–593

    CAS  Google Scholar 

  • Bishop NE, Hugo DL, Borovec SV, Anderson DA (1994) Rapid and efficient purification of hepatitis A virus from cell culture. J Virol Methods 47:203–216

    Article  CAS  Google Scholar 

  • Bonafe CFS, Vital CMR, Telles RCB, Goncalves MC, Matsuura MSA, Pessine FBT, Freitas DRC, Vega J (1998) Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature. Biochemistry 37:11097–11105

    Article  CAS  Google Scholar 

  • Bradley DW, Hess RA, Tao F, Sciaba-Lentz L, Remaley AT, Laugharn JA, Manak M (2000) Pressure cycling technology: a novel approach to virus inactivation in plasma. Transfusion 40:193–200

    Article  CAS  Google Scholar 

  • Buckow R, Isbarn S, Knorr D, Heinz V, Lehmacher A (2008) Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure. Appl Environ Microbiol 74:1030–1038

    Article  CAS  Google Scholar 

  • Bull MK, Zerdin K, Howe E, Goicoechea D, Paramanandhan P, Stockman R, Sellahewa J, Szabo E, Stewart CM (2004) The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov Food Sci Emerg Technol 5:135–149

    Article  CAS  Google Scholar 

  • Calci KR, Meade GK, Tezloff RC, Kingsley DH (2005) High-pressure inactivation of hepatitis A virus within oysters. Appl Environ Microbiol 71:339–343

    Article  CAS  Google Scholar 

  • Cannon JL, Papafragkou E, Park GW, Osborne J, Jaykus L, Vinje J (2006) Surrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J Food Prot 69:2761–2765

    Google Scholar 

  • Caul EO (1994) Small round structured viruses: airborne transmission and hospital control. Lancet 343:1240–1242

    Article  CAS  Google Scholar 

  • CDC (Centers for Disease Control and Prevention) (2004) Noroviruses. http://www.cdc.gov/ucidod/dvrd/revb/gastro/norovirus.htm

  • Cheftel JC (1992) Effects of high hydrostatic pressure on food constituents: an overview. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. INSERM/John Libbey Eurotext, Paris, pp 195–209

    Google Scholar 

  • Cheftel JC (1995) Review: High pressure microbial inactivation and food preservation. Food Sci Technol Int 1:75–90

    Article  Google Scholar 

  • Chen H, Hoover DG, Kingsley DH (2005) Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate. J Food Prot 68:2389–2394

    Google Scholar 

  • Chen H, Joerger RD, Kingsley DH, Hoover DG (2004) Pressure inactivation kinetics of phage lambda cI 857. J Food Prot 67:505–511

    Google Scholar 

  • Chen ZM, Tian SM, Ruan KC (2001) A vaccine to coxsackievirus prepared by high pressure. Chin J Biochem Biophys 33:128–130

    CAS  Google Scholar 

  • Cliver DO, Matsui SM (2002) Viruses. In: Cliver DO, Riemann HP (eds) Foodborne diseases. Academic Press, Inc., London, pp 161–176

    Google Scholar 

  • Cuthbert JA (2001) Hepatitis A: old and new. Clin Microbiol Rev 14:38–58

    Article  CAS  Google Scholar 

  • Da Poian A, Gomes AMO, Oliveira RJN, Silva JL (1996) Migration of vesicular stomatitis virus glycoprotein to the nucleus of infected cells. Proc Natl Acad Sci U S A 93:8268–8273

    Article  Google Scholar 

  • Doultree JC, Druce JD, Birch CJ, Bowden DS, Marshall JA (1999) Inactivation of feline calicivirus, a Norwalk virus surrogate. J Hosp Infect 41:51–57

    Article  CAS  Google Scholar 

  • Farr D (1990) High pressure technology in the food industry. Trends Food Sci Technol 1:14–16

    Article  Google Scholar 

  • Foguel D, Teschke CM, Prevelige PE, Silva JL (1995) Role of entropic interactions in viral capsids—single amino-acid substitutions in P22-bacteriophage coat protein resulting in loss of capsid stability. Biochemistry 34:1120–1126

    Article  CAS  Google Scholar 

  • Freitas MS, Da Poian AT, Barth OM, Rebello MA, Silva JL, Gaspar LP (2006) The fusogenic state of Mayaro virus induced by low pH and by hydrostatic pressure. Cell Biochem Biophys 44:325–335

    Article  CAS  Google Scholar 

  • FSN (Food Safety Network) (2004) Ship hit by Norwalk cleaned up: no sign of virus now after 400 sickened, www.foodsafetynetwork.ca. D. Powell, 7 June 2004

  • FSN (Food Safety Network) (2005) Those nasty noroviruses, including Norwalk, may be getting nastier. www.foodsafetynetwork.ca. D. Powell, 28 Jan 2005

  • Gaspar LP, Johnson JE, Silva JL, Poian ATD (1997) Different partially folded states of the capsid protein of cowpea severe mosaic virus in the disassembly pathway. J Mol Biol 273:456–466

    Article  CAS  Google Scholar 

  • Gaspar LP, Mendes YS, Yamamura AMY, Almeida LFC, Caride E, Gonçalves RB, Silva JL, Oliveira AC, Galler R, Freire MS (2008) Pressure-inactivated yellow fever 17DD virus: implications for vaccine development. J Virol Methods 150:57–62

    Article  CAS  Google Scholar 

  • Gaspar LP, Silva ACB, Gomes AMO, Reitas MS, AnoBom APD, Schwarez WD, Mestecky J, Novak MJ, Foguel D, Silva JL (2002) Hydrostatic pressure induces the fusion-active state of enveloped viruses. J Biol Chem 277:8433–8439

    Article  CAS  Google Scholar 

  • Gassilloud B, Schwartzbrod L, Gantzer C (2003) Presence of viral genomes in mineral water: a sufficient condition to assume infectious risk? Appl Environ Microbiol 69:3965–3969

    Article  CAS  Google Scholar 

  • Giddings NJ, Allard HA, Hite DH (1929) Inactivation of the tobacco mosaic virus by high pressure. Phytopathology 19:749–750

    CAS  Google Scholar 

  • Grohmann GS, Lee A (2003) Viruses, food and environment. In: Hocking AD (ed) Foodborne microorganisms of public health significance. AIFST Inc., Waterloo, DC, NSW, Australia, pp 615–634

    Google Scholar 

  • Grohmann GS, Murphy AM, Christopher PJ, Auty E, Greenberg HB (1981) Norwalk virus gastroenteritis in volunteers consuming depurated oysters. Aust J Exp Biol Med Sci 59:219–228

    Article  CAS  Google Scholar 

  • Grove SF, Lee A, Lewis T, Stewart CM, Chen H, Hoover DG (2006) Inactivation of foodborne viruses of significance by high pressure and other processes. J Food Prot 69:957–968

    Google Scholar 

  • Halliday ML, Kang LY, Zhou TK, Hu MD, Pan QC, Fu TY, Huang YS, Hu SL (1991) An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J Infect Dis 164:852–859

    Article  CAS  Google Scholar 

  • Ho MS, Glass RI, Monroe SS, Madore HP, Stine S, Pinsky PF, Cubitt D, Ashley C, Caul EO (1989) Viral gastroenteritis aboard a cruise ship. Lancet 2:961–965

    Article  CAS  Google Scholar 

  • Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43:99–107

    Google Scholar 

  • Hutson AM, Atmar RL, Estes MK (2004) Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol 12:279–287

    Article  CAS  Google Scholar 

  • Isaacs NS, Chilton P, Mackey B (1995) Studies on the inactivation by high pressure of microorganisms. In: Ledward DA, Johnston DE, Earnshaw RG, Hastings APM (eds) High pressure processing of foods. Nottingham University Press, Leicestershire, UK, pp 65–80

    Google Scholar 

  • Isbarn S, Buckow R, Himmelreich A, Lehmacher A, Heinz V (2007) Inactivation of avian influenza virus by heat and high hydrostatic pressure. J Food Prot 70:667–673

    Google Scholar 

  • Ishimaru D, Sá-Carvalho D, Silva JL (2004) Pressure-inactivated FMDV: a potential vaccine. Vaccine 22:2334–2339

    Article  CAS  Google Scholar 

  • Jaykus L (2000) Enteric viruses as emerging agents of foodborne disease. Irish J Agr Food Res 39:245–255

    Google Scholar 

  • Jiang X, Wang M, Wang K, Estes MK (1993) Sequence and genomic organization of Norwalk virus. Virology 195:51–61

    Article  CAS  Google Scholar 

  • Kapikian AZ, Estes MK, Chanock RM (1996) Norwalk group of viruses. In: Fields BN et al (eds) Virology. Lippincott–Raven Publishers, Philadelphia, pp 783–810

    Google Scholar 

  • Kaplan JE, Feldman R, Campbell DS, Lookabaugh C, Gary GW (1982) The frequency of a Norwalk-like pattern of illness in outbreaks of acute gastroenteritis. Am J Public Health 72:1329–1332

    Article  CAS  Google Scholar 

  • Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW IV (2003) STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578

    Article  CAS  Google Scholar 

  • Khadre MA, Yousef AE (2002) Susceptibility of human rotavirus to ozone, high pressure, and pulse electric field. J Food Prot 65:1441–1446

    CAS  Google Scholar 

  • Kingsley DH, Chen H (2008) Aqueous matrix compositions and pH influence feline calicivirus inactivation by high pressure processing. J Food Prot 71:1598–1603

    Google Scholar 

  • Kingsley DH, Chen H (2009) Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. Int J Food Microbiol 130:61–64

    Article  CAS  Google Scholar 

  • Kingsley DH, Chen H, Hoover DG (2004) Inactivation of selected picornaviruses by high hydrostatic pressure. Virus Res 102:221–224

    Article  CAS  Google Scholar 

  • Kingsley DH, Guan D, Hoover DG (2005) Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions. J Food Prot 68:1748–1751

    Google Scholar 

  • Kingsley DH, Guan D, Hoover DG, Chen H (2006) Inactivation of hepatitis A virus by high-pressure processing: the role of temperature and pressure oscillation. J Food Prot 69:2454–2459

    Google Scholar 

  • Kingsley DH, Hollinian DR, Calci KR, Chen H, Flick GJ (2007) Inactivation of a norovirus by high-pressure processing. Appl Environ Microbiol 73:581–585

    Article  CAS  Google Scholar 

  • Kingsley DH, Hoover DG, Papafragkou E, Richards GP (2002) Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. J Food Prot 65:1605–1609

    Google Scholar 

  • Koopmans M, von Bonsdorff CH, Vinje J, de Medici D, Monroe S (2002) Foodborne viruses. FEMS Microbiol Rev 26:187–205

    Article  CAS  Google Scholar 

  • Kunugi S, Tanaka N (2002) Cold denaturation of proteins under high pressure. Biochim Biophys Acta 1595:329–344

    Article  CAS  Google Scholar 

  • Lado BH, Yousef AE (2002) Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect 4:433–440

    Article  Google Scholar 

  • Ledward DA (1995) High pressure processing-the potential. In: Ledward DA, Johnston DE, Earnshaw RG, Hasting APM (eds) High pressure processing of foods. Nottingham University Press, Leicestershire, UK, pp 1–6

    Google Scholar 

  • Lees D (2000) Viruses and bivalve shellfish. Int J Food Microbiol 59:81–116

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms. Prentice Hall International, Inc., London, UK

    Google Scholar 

  • Marler-Clark (2004) About-Hepatitis A. http://www.about-hepatitis/com, 6/16/04. Marler Clark Attorneys-at-law

  • Marks PJ, Vipond IB, Carlisle D, Deakin D, Fey RE, Caul EO (2000) Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiol Infect 124:481–487

    Article  CAS  Google Scholar 

  • McDonnell RJ, Wall PG, Adak GK, Evans HS, Cowden JM, Caul CO (1995) Outbreaks of infectious intestinal disease associated with person-to-person spread in hotels and restaurants. Commun Dis Rep CDR Rev 5:R150–R152

    CAS  Google Scholar 

  • McEvoy M, Blake W, Brown D, Green J, Cartwright R (1996) An outbreak of viral gastroenteritis on a cruise ship. Commun Dis Rep CDR Rev 6:R188–R192

    CAS  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  CAS  Google Scholar 

  • Murchie LW, Kelly AL, Wiley M, Adair BM, Patterson M (2007) Inactivation of a calicivirus and enterovirus in shellfish by high pressure. Innov Food Sci Emerg Technol 8:213–217

    Article  Google Scholar 

  • Murphy AM, Grohmann GS, Christopher PJ, Lopez WA, Davey GR, Millsom RH (1979) An Australia-wide outbreak of gastroenteritis from oysters caused by Norwalk virus. Med J Aust 2:329–333

    CAS  Google Scholar 

  • Nakagami T, Shigehisa T, Ohmori T, Taji S, Hase A, Kimura T, Yamanishi K (1992) Inactivation of herpes viruses by high hydrostatic pressure. J Virol Methods 38:255–261

    Article  CAS  Google Scholar 

  • Oh DY, Silva PA, Hauroeder B, Diedrich S, Cardoso DD, Schreier E (2006) Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Arch Virol 151:1199–1206

    Article  CAS  Google Scholar 

  • Oliveira AC, Ishimaru D, Goncalves RB, Smith TJ, Mason P, Sa-Carvalho D, Silva JL (1999) Low temperature and pressure stability of picornaviruses: Implications for virus uncoating. Biophys J 76:1270–1279

    Article  CAS  Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Canovas GV, Swanson BG (1999) High-pressure treatment in food preservation. In: Rahman MS (ed) Handbook of food preservation. Marcel Dekker, Inc., New York, pp 533–576

    Google Scholar 

  • Patterson MF, Quinn M, Simpson R, Gilmour A (1995) Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J Food Prot 58:524–529

    Google Scholar 

  • Patterson W, Haswell P, Fryers PT, Green J (1997) Outbreak of small round structured virus gastroenteritis arose after kitchen assistant vomited. Commun Dis Rep CDR Rev 7:R101–R103

    CAS  Google Scholar 

  • Perche PY, Clery C, Bouloy M, Burckhart MF, Masson P, Michel P (1997) Study of inactivation and immunogenicity of rift valley fever virus type clone 13 treated by high hydrostatic pressure. Am J Trop Med Hyg 57:256–257

    Google Scholar 

  • Perrett K, Kudesia G (1995) Gastroenteritis associated with oysters. Commun Dis Rep CDR Rev 5:R153–R154

    CAS  Google Scholar 

  • Pontes L, Cordeiro Y, Giongo V, Villas-Boas M, Barreto A, Araujo JR, Silva JL (2001) Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein VP4. J Mol Biol 30:1171–1179

    Article  Google Scholar 

  • Pontes L, Fornells LA, Giongo V, Araujo JRV, Sepulveda A, Villas-Boas M, Bonafe CF S, Silva JL (1997) Pressure inactivation of animal viruses: potential biotechnological applications. In: Karel Heremans (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Belgium, pp. 91–94

    Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology, 5th edn. McGraw-Hill Publishing, Inc., New York

    Google Scholar 

  • Sale AJ, Gould GW, Hamilton WA (1970) Inactivation of bacterial spores by hydrostatic pressure. J Gen Microbiol 60:323–334

    Article  CAS  Google Scholar 

  • SCVM (Scientific Committee on Veterinary Measures relating to Public Health) (2002) Norwalk-like viruses. 8-3-2002 Report

    Google Scholar 

  • Silva JL (1993) Effects of pressure on large multimeric proteins and viruses. In: R. Winter and J. Jonas (eds) High Pressure Chemistry, Biochemistry and Materials Science. Kluwer Academic Publishers, Netherlands, pp. 561–578

    Google Scholar 

  • Silva JL, Luan P, Glaser M, Voss EW, Weber G (1992) Effects of hydrostatic pressure on a membrane-enveloped virus: high immunogenicity of the pressure-inactivated virus. J Virol 66:2111–2117

    CAS  Google Scholar 

  • Silva JL, Oliveira AC, Gomes AMO, Lima LMTR, Mohana-Borges R, Pacheco ABF, Foguel D (2002) Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. Biochim Biophys Acta 1595:250–265

    Article  CAS  Google Scholar 

  • Slomka MJ, Appleton H (1998) Feline calicivirus as a model system for heat inactivation studies of small round structured viruses in shellfish. Epidemiol Infect 121:401–407

    Article  CAS  Google Scholar 

  • Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158

    Article  CAS  Google Scholar 

  • Tang Q, Li D, Xu J, Wang J, Zhao Y, Li Z, Xue C (2010) Mechanism of inactivation of murine norovirus-1 by high pressure processing. Int J Food Microbiol 137:186–189

    Article  CAS  Google Scholar 

  • Thiel HJ, Konig M (1999) Caliciviruses: an overview. Vet Microbiol 69:55–62

    Article  CAS  Google Scholar 

  • Tian SM, Ruan KC, Qian JF, Shao GQ, Balny C (2000) Effects of hydrostatic pressure on the structure and biological activity of infectious bursal disease virus. Eur J Biochem 267:4486–4494

    Article  CAS  Google Scholar 

  • Tian SM, Qian JF, Shao GQ, Ruan KC (1999) High immunogenicity of the pressure-inactivated virus. Acta Biochim Biophys Sin (Shanghai) 31:334–336

    Google Scholar 

  • Weber G (1993) Thermodynamics of the association and the pressure dissociation of oligomeric proteins. J Phys Chem 27:7108–7115

    Article  Google Scholar 

  • Wilkinson N, Kurdziel AS, Langton S, Needs E, Cook N (2001) Resistance of poliovirus to inactivation by high hydrostatic pressures. Innov Food Sci Emerg Technol 2:95–98

    Article  Google Scholar 

  • Wobus CE, Thackray LB, Virgin HW IV (2006) Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80:5104–5112

    Article  CAS  Google Scholar 

  • Yamashita T, Kobayashi S, Sakae K, Nakata S, Chiba S, Ishihara Y, Isomura S (1991) Isolation of cytopathic small round viruses with BS-C-1 cells from patients of gastroenteritis. J Infect Dis 164:954–957

    Article  CAS  Google Scholar 

  • Yamashita T, Sakae K, Ishihara Y, Isomura S, Utagawa E (1993) Prevalence of newly isolated, cytopathic small-round virus (Aichi strain) in Japan. J Clin Microbiol 31:2938–2943

    CAS  Google Scholar 

  • Yamashita T, Sakae K, Kobayashi S, Ishihara Y, Miyake T, Mubina A, Isomura S (1995) Isolation of cytopathic small-round viruses (Aichi virus) from Pakistani children and Japanese travelers from Southeast Asia. Microbiol Immunol 39:433–435

    Article  CAS  Google Scholar 

  • Yamashita T, Sugiyama M, Tsuzuki H, Sakae K, Suzuki Y, Miyazaki Y (2000) Application of a reverse-transcriptase PCR for identification and differentiation of Aichi virus, a new member of the Picornavirus family associated with gastroenteritis in humans. J Clin Microbiol 38:2955–2961

    CAS  Google Scholar 

  • Yuste J, Capellas M, Pla R, Fung DYC, Mor-Mur M (2001) High pressure processing for food safety and preservation: a review. J Rapid Meth Automat Microbiol 9:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Hoover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shearer, A.E.H., Kniel, K.E., Chen, H., Hoover, D.G. (2016). High-Pressure Effects on Viruses. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_15

Download citation

Publish with us

Policies and ethics