Skip to main content

Regenerative Medicine Approaches to Degenerative Muscle Diseases

  • Chapter
  • First Online:
Regenerative Medicine for Degenerative Muscle Diseases

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 885 Accesses

Abstract

The emerging multidisciplinary field of regenerative medicine aims to develop new technology to repair and replace cells, tissues, and organs. Regenerative medicine holds the promise of regenerating damaged tissues and organs in the body by either replacing damaged tissue or by stimulating the body’s own repair mechanisms to heal previously irreparable tissues or organs. Regenerative approaches address the root cause of disease and offer prospects of tissue repair previously unthinkable. For degenerative muscular disorders, most fall into the category of rare inherited diseases. To cure inherited muscular disorders, recent attention has focused on the transfer of normal genes to correct mutant diseased genes. This chapter discusses cell- and vector-mediated gene therapy technology under development for various inherited disorders of skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regenerative Medicine. http://report.nih.gov/NIHfactsheets/ViewFactSheet.aspx?csid=62&key=R-R. Accessed 1 May 2014.

  2. Terzic A, Nelson TJ. Regenerative medicine primer. Mayo Clin Proc. 2013;88(7):766–75.

    Article  PubMed  Google Scholar 

  3. Organ Procurement and Transplantation Network. http://optn.transplant.hrsa.gov/. Accessed 1 May 2014.

  4. U.S. Government Information on Organ and Tissue Donation and Transplantation. http://www.organdonor.gov/about/data.html. Accessed 1 May 2014.

  5. Colvin-Adams M, Smithy JM, Heubner BM, et al. OPTN/SRTR 2012 annual data report: heart. Am J Transplant. 2014;14 Suppl 1:113–38.

    Article  PubMed  Google Scholar 

  6. Smith JM, Skeans MA, Horslen SP, et al. OPTN/SRTR 2012 annual data report: intestine. Am J Transplant. 2014;14 Suppl 1:97–111.

    Article  PubMed  Google Scholar 

  7. Kim WR, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 annual data report: liver. Am J Transplant. 2014;14 Suppl 1:69–96.

    Article  PubMed  Google Scholar 

  8. Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 annual data report: kidney. Am J Transplant. 2014;14 Suppl 1:11–44.

    Article  PubMed  Google Scholar 

  9. Valapour M, Skeans MA, Heubner BM, et al. OPTN/SRTR 2012 annual data report: lung. Am J Transplant. 2014;14 Suppl 1:139–65.

    Article  PubMed  Google Scholar 

  10. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  11. Atala A. Creation of bladder tissue in vitro and in vivo. A system for organ replacement. Adv Exp Med Biol. 1999;462:31–42.

    Article  CAS  PubMed  Google Scholar 

  12. Atala A. Tissue engineering for bladder substitution. World J Urol. 2000;18(5):364–70.

    Article  CAS  PubMed  Google Scholar 

  13. Atala A. Bladder regeneration by tissue engineering. BJU Int. 2001;88(7):765–70.

    Article  CAS  PubMed  Google Scholar 

  14. Atala A. Tissue engineering of human bladder. Br Med Bull. 2011;97:81–104.

    Article  PubMed  Google Scholar 

  15. Horst M, Madduri S, Gobet R, et al. Engineering functional bladder tissues. J Tissue Eng Regen Med. 2013;7(7):515–22.

    Article  CAS  PubMed  Google Scholar 

  16. Gunter CI, Machens HG. New strategies in clinical care of skin wound healing. Eur Surg Res. 2012;49(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  17. Berg M, Ejnell H, Kovacs A, et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report. Tissue Eng Part A. 2014;20(1–2):389–97.

    Article  PubMed  Google Scholar 

  18. Wise J. Five year results show success of first tissue engineered trachea transplant. BMJ. 2013;347:f6365.

    Article  PubMed  Google Scholar 

  19. Pastides P, Chimutengwende-Gordon M, Maffulli N, Khan W. Stem cell therapy for human cartilage defects: a systematic review. Osteoarthritis Cartilage. 2013;21(5):646–54.

    Article  CAS  PubMed  Google Scholar 

  20. Kruse FE, Cursiefen C. Surgery of the cornea: corneal, limbal stem cell and amniotic membrane transplantation. Dev Ophthalmol. 2008;41:159–70.

    Article  CAS  PubMed  Google Scholar 

  21. Mase Jr VJ, Hsu JR, Wolf SE, et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics. 2010;33(7):511.

    PubMed  Google Scholar 

  22. Carrier P, Deschambeault A, Audet C, et al. Impact of cell source on human cornea reconstructed by tissue engineering. Invest Ophthalmol Vis Sci. 2009;50(6):2645–52.

    Article  PubMed  Google Scholar 

  23. Proulx S, D’Arc Uwamaliya J, Carrier P, et al. Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Mol Vis. 2010;16:2192–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cerqueira MT, Marques AP, Reis RL. Using stem cells in skin regeneration: possibilities and reality. Stem Cells Dev. 2012;21(8):1201–14.

    Article  CAS  PubMed  Google Scholar 

  25. Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Res C Embryo Today. 2012;96(3):237–47.

    Article  CAS  PubMed  Google Scholar 

  26. Yildirimer L, Thanh NT, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30(12):638–48.

    Article  CAS  PubMed  Google Scholar 

  27. Borestrom C, Simonsson S, Enochson L, et al. Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl Med. 2014;3(4):433–47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sato Y, Wakitani S, Takagi M. Xeno-free and shrinkage-free preparation of scaffold-free cartilage-like disc-shaped cell sheet using human bone marrow mesenchymal stem cells. J Biosci Bioeng. 2013;116(6):734–9.

    Article  CAS  PubMed  Google Scholar 

  29. Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS. Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A. 2012;18(19–20):1949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi S, Takebe T, Inui M, et al. Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc Natl Acad Sci U S A. 2011;108(35):14479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sicari BM, Dearth CL, Badylak SF. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat Rec (Hoboken). 2014;297(1):51–64.

    Article  CAS  Google Scholar 

  32. Turner NJ, Badylak SF. Regeneration of skeletal muscle. Cell Tissue Res. 2012;347(3):759–74.

    Article  PubMed  Google Scholar 

  33. Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rare diseases: facts and statistics, https://globalgenes.org/raredaily/rare-disease-facts-and-figures/.

  35. Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45(10):2163–72.

    Article  CAS  PubMed  Google Scholar 

  36. Mills GH, Kyroussis D, Jenkins P, et al. Respiratory muscle strength in Cushing’s syndrome. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1762–5.

    Article  CAS  PubMed  Google Scholar 

  37. Fournier M, Huang ZS, Li H, Da X, Cercek B, Lewis MI. Insulin-like growth factor I prevents corticosteroid-induced diaphragm muscle atrophy in emphysematous hamsters. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R34–43.

    Article  CAS  PubMed  Google Scholar 

  38. Short KR, Bigelow ML, Nair KS. Short-term prednisone use antagonizes insulin’s anabolic effect on muscle protein and glucose metabolism in young healthy people. Am J Physiol Endocrinol Metab. 2009;297(6):E1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hillel AT, Taube JM, Cornish TC, et al. Characterization of human mesenchymal stem cell-engineered cartilage: analysis of its ultrastructure, cell density and chondrocyte phenotype compared to native adult and fetal cartilage. Cells Tissues Organs. 2010;191(1):12–20.

    Article  PubMed  Google Scholar 

  40. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4(1):3–11.

    Article  PubMed  Google Scholar 

  41. Ballas CB, Zielske SP, Gerson SL. Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem. 2002;38:20–8.

    Article  Google Scholar 

  42. Thomas ED, Lochte Jr HL, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–6.

    Article  CAS  PubMed  Google Scholar 

  43. McCulloch EA, Till JE. Proliferation of hemopoietic colony-forming cells transplanted into irradiated mice. Radiat Res. 1964;22:383–97.

    Article  CAS  PubMed  Google Scholar 

  44. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255–6.

    Article  CAS  PubMed  Google Scholar 

  45. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  46. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005;19(10):1129–55.

    Article  CAS  PubMed  Google Scholar 

  47. Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med. 2014;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gokhale PJ, Andrews PW. The development of pluripotent stem cells. Curr Opin Genet Dev. 2012;22(5):403–8.

    Article  CAS  PubMed  Google Scholar 

  49. Klimanskaya I. Embryonic stem cells from blastomeres maintaining embryo viability. Semin Reprod Med. 2013;31(1):49–55.

    Article  PubMed  Google Scholar 

  50. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481–5.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  52. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state 1. Nature. 2007;448(7151):318–24.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  54. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;1151526.

    Google Scholar 

  55. Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116(8):1378–91.

    Article  CAS  PubMed  Google Scholar 

  56. Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014;7:19–29.

    PubMed  PubMed Central  Google Scholar 

  57. Budniatzky I, Gepstein L. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med. 2014;3(4):448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jung DW, Kim WH, Williams DR. Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol. 2014;9(1):80–95.

    Article  CAS  PubMed  Google Scholar 

  59. Kastelein JJ, Ross CJ, Hayden MR. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world. Hum Gene Ther. 2013;24(5):472–8.

    Article  CAS  PubMed  Google Scholar 

  60. Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013;15(2):65–77.

    Article  CAS  PubMed  Google Scholar 

  62. Byrne BJ. Pathway for approval of a gene therapy orphan product: treading new ground. Mol Ther. 2013;21(8):1465–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18(3):643–50.

    Article  CAS  PubMed  Google Scholar 

  65. Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chung DC, Lee V, Maguire AM. Recent advances in ocular gene therapy. Curr Opin Ophthalmol. 2009;20(5):377–81.

    Article  PubMed  Google Scholar 

  67. Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab. 2009;96(4):151–7.

    Article  CAS  PubMed  Google Scholar 

  68. Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. 2012;20(4):699–708.

    Article  CAS  PubMed Central  Google Scholar 

  69. Choi VW, McCarty DM, Samulski RJ. AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther. 2005;5(3):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Tapscott SJ, Storb R. Local gene delivery and methods to control immune responses in muscles of normal and dystrophic dogs. Methods Mol Biol. 2011;709:265–75.

    Article  CAS  PubMed  Google Scholar 

  71. Mendell JR, Rodino-Klapac LR, Rosales XQ, et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 2010;68(5):629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, et al. Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol. 2009;66(3):290–7.

    Article  CAS  PubMed  Google Scholar 

  73. Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Z, Kuhr CS, Allen JM, et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther. 2007;15(6):1160–6.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Z, Storb R, Halbert CL, et al. Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther. 2012;20(8):1501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jarmin S, Kymalainen H, Popplewell L. Dickson G. Expert Opin Biol Ther: New developments in the use of gene therapy to treat Duchenne muscular dystrophy; 2013.

    Google Scholar 

  77. Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013;14(6):373–8.

    Article  CAS  PubMed  Google Scholar 

  78. Hoffman EP, Bronson A, Levin AA, et al. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol. 2011;179(1):12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nelson SF, Crosbie RH, Miceli MC, Spencer MJ. Emerging genetic therapies to treat Duchenne muscular dystrophy. Curr Opin Neurol. 2009;22(5):532–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8(10):918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357(26):2677–86.

    Article  PubMed  Google Scholar 

  82. Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med. 2011;364(16):1513–22.

    Article  CAS  PubMed  Google Scholar 

  83. Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378(9791):595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010;41(4):500–10.

    Article  PubMed  Google Scholar 

  85. Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104(4):375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91.

    Article  CAS  PubMed  Google Scholar 

  87. Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation duchenne muscular dystrophy. PLoS ONE. 2013;8(12), e81302.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/ Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25(9):1158–64.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sonnemann KJ, Heun-Johnson H, Turner AJ, Baltgalvis KA, Lowe DA, Ervasti JM. Functional substitution by TAT-utrophin in dystrophin-deficient mice. PLoS Med. 2009;6(5), e1000083.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tinsley JM, Fairclough RJ, Storer R, et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS ONE. 2011;6(5), e19189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nguyen HH, Jayasinha V, Xia B, Hoyte K, Martin PT. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci U S A. 2002;99(8):5616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cosford KL, Taylor SM, Thompson L, Shelton GD. A possible new inherited myopathy in a young Labrador retriever. Can Vet J. 2008;49(4):393–7.

    PubMed  PubMed Central  Google Scholar 

  93. Frase AR. The miracle of Nibs. http://www.joshuafrase.org/uploads/JFF-Thestoryof Nibs.pdf. 2009.

  94. Heckmatt JZ, Sewry CA, Hodes D, Dubowitz V. Congenital centronuclear (myotubular) myopathy. A clinical, pathological and genetic study in eight children. Brain. 1985;108(Pt 4):941–64.

    Article  PubMed  Google Scholar 

  95. Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis. 2008;3:26.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet. 1996;13(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  97. Laporte J, Blondeau F, Buj-Bello A, et al. Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum Mol Genet. 1998;7(11):1703–12.

    Article  CAS  PubMed  Google Scholar 

  98. Cameron JM, Maj MC, Levandovskiy V, MacKay N, Shelton GD, Robinson BH. Identification of a canine model of pyruvate dehydrogenase phosphatase 1 deficiency. Mol Genet Metab. 2007;90(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  99. Buj-Bello A, Laugel V, Messaddeq N, et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A. 2002;99(23):15060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dowling JJ, Vreede AP, Low SE, et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 2009;5(2), e1000372.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Beggs AH, Bohm J, Snead E, et al. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci U S A. 2010;107(33):14697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buj-Bello A, Fougerousse F, Schwab Y, et al. AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet. 2008;17(14):2132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grange RW. Muscle function in a canine model of X-Linked Myotubular Myopathy. Muscle Nerve. 2012.

    Google Scholar 

  104. Goddard MA, Mitchell EL, Smith BK, Childers MK. Establishing clinical end points of respiratory function in large animals for clinical translation. Phys Med Rehabil Clin N Am. 2012;23(1):75–94. xi.

    Article  PubMed  Google Scholar 

  105. Butler D. French move past Genethon to gene-therapy research. Nature. 1993;361(6414):671.

    CAS  PubMed  Google Scholar 

  106. Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med. 2014;6(220), 220ra210.

    Article  Google Scholar 

Download references

Conflict of Interest Statement

MC is an inventor on patents related to recombinant AAV technology. MC owns stock options in a biotechnology company commercializing AAV for gene therapy applications. To the extent that the work in this manuscript increases the value of these commercial holdings, MC has a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin K. Childers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Childers, M.K., Wang, Z. (2016). Regenerative Medicine Approaches to Degenerative Muscle Diseases. In: Childers, M. (eds) Regenerative Medicine for Degenerative Muscle Diseases. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3228-3_1

Download citation

Publish with us

Policies and ethics