Skip to main content

Target Gene Discovery for Novel Therapeutic Agents in Cancer Treatment

  • Protocol
Cancer Gene Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1381))

  • 2706 Accesses

Abstract

Target identification of novel therapeutic drugs is pivotal for the establishment of (1) new anticancer regiments, (2) to control side effects of the drugs, and (3) to identify appropriate combinations with established drugs.

Here, we describe several in vitro assays applicable to characterize different characteristics of tumor cells. Furthermore, we present a protocol for establishing a reporter gene system for in vivo imaging, allowing for the study of drug effects in small animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammerpohl O et al (2007) Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 96(1):73–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Orntoft TF, Petersen SE, Wolf H (1988) Dual-parameter flow cytometry of transitional cell carcinomas. Quantitation of DNA content and binding of carbohydrate ligands in cellular subpopulations. Cancer 61(5):963–970

    Article  CAS  PubMed  Google Scholar 

  3. Asklund T et al (2004) Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 40(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  4. Svechnikova I, Ammerpohl O, Ekstrom TJ (2007) p21waf1/Cip1 partially mediates apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 354(2):466–471

    Article  CAS  PubMed  Google Scholar 

  5. Ammerpohl O et al (2004) HDACi phenylbutyrate increases bystander killing of HSV-tk transfected glioma cells. Biochem Biophys Res Commun 324(1):8–14

    Article  CAS  PubMed  Google Scholar 

  6. Appelskog IB et al (2004) Histone deacetylase inhibitor 4-phenylbutyrate suppresses GAPDH mRNA expression in glioma cells. Int J Oncol 24(6):1419–1425

    CAS  PubMed  Google Scholar 

  7. Tolboom TC, Huizinga TW (2007) In vitro matrigel fibroblast invasion assay. Methods Mol Med 135:413–421

    Article  PubMed  Google Scholar 

  8. Casey RC et al (2003) Establishment of an in vitro assay to measure the invasion of ovarian carcinoma cells through mesothelial cell monolayers. Clin Exp Metastasis 20(4):343–356

    Article  CAS  PubMed  Google Scholar 

  9. Trauzold A et al (2005) CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. FASEB J 19(6):620–622

    CAS  PubMed  Google Scholar 

  10. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  PubMed  Google Scholar 

  11. Weissleder R et al (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  CAS  PubMed  Google Scholar 

  12. Villalobos V, Naik S, Piwnica-Worms D (2007) Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu Rev Biomed Eng 9:321–349

    Article  CAS  PubMed  Google Scholar 

  13. Mezzanotte L et al (2014) A new multicolor bioluminescence imaging platform to investigate NF-kappaB activity and apoptosis in human breast cancer cells. PLoS One 9(1), e85550

    Article  PubMed Central  PubMed  Google Scholar 

  14. O’Brien MA et al (2005) Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Screen 10(2):137–148

    Article  PubMed  Google Scholar 

  15. Bouvet M, Spernyak J, Katz MH, Mazurchuk RV, Takimoto S, Bernacki R, Rustum YM, Moossa AR, Hoffman RM (2005) High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Res 65(21):9829–9833

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Tiwari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tiwari, S., Ammerpohl, O., Kalthoff, H. (2016). Target Gene Discovery for Novel Therapeutic Agents in Cancer Treatment. In: Grützmann, R., Pilarsky, C. (eds) Cancer Gene Profiling. Methods in Molecular Biology, vol 1381. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3204-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3204-7_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3203-0

  • Online ISBN: 978-1-4939-3204-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics