Skip to main content

Detection of Phosphorylation Status of Cytokinetic Components

  • Protocol
Yeast Cytokinesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1369))

Abstract

Yeast cells can be easily cultured, synchronized, and genetically modified making them a convenient model system to study molecular mechanisms underlying cytokinesis. Here, we describe simple methods that allow the analysis of the phosphorylation profile of cytokinetic proteins, both in vivo and in vitro, using standard laboratory equipment. In addition, we compare the ability of three different, standard, and optimized acrylamide gel conditions to separate phosphorylated forms, using the protein Inn1 as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barford D, Hu SH, Johnson LN (1991) Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218(1):233–260

    Article  CAS  PubMed  Google Scholar 

  2. Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7(7):473–483, doi: 10.1038/nrm1960

    Article  CAS  PubMed  Google Scholar 

  3. Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM (2007) A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128(3):519–531, doi: 10.1016/j.cell.2006.12.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Meitinger F, Palani S, Pereira G (2012) The power of MEN in cytokinesis. Cell Cycle 11(2):219–228

    Article  CAS  PubMed  Google Scholar 

  5. Barr FA, Gruneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131(5):847–860

    Article  CAS  PubMed  Google Scholar 

  6. Bouchoux C, Uhlmann F (2011) A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit. Cell 147(4):803–814, doi: 10.1016/j.cell.2011.09.047

    Article  CAS  PubMed  Google Scholar 

  7. Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  CAS  PubMed  Google Scholar 

  8. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  9. Thomas JO, Kornberg RD (1975) An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A 72(7):2626–2630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482

    Article  CAS  PubMed  Google Scholar 

  11. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851

    Article  CAS  PubMed  Google Scholar 

  12. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333, doi: 10.1002/elps.200305844

    Article  CAS  PubMed  Google Scholar 

  13. Breeden LL (1997) Alpha-factor synchronization of budding yeast. Methods Enzymol 283:332–341

    Article  CAS  PubMed  Google Scholar 

  14. Harlow E, Lane D (2006) Immunoblotting: antigen detection using chemiluminescence. CSH Protoc 2006(1), doi: 10.1101/pdb.prot4271

    Google Scholar 

  15. Harlow E, Lane D (2006) Immunoblotting: semi-dry electrophoretic transfer of proteins from gels to membranes. CSH Protoc 2006(1), doi: 10.1101/pdb.prot4301

    Google Scholar 

  16. Sambrook J, Russell DW (2006) SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc 2006(4), doi: 10.1101/pdb.prot4540

    Google Scholar 

  17. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Palani S, Meitinger F, Boehm ME, Lehmann WD, Pereira G (2012) Cdc14-dependent dephosphorylation of Inn1 contributes to Inn1-Cyk3 complex formation. J Cell Sci 125(Pt 13):3091–3096

    Article  CAS  PubMed  Google Scholar 

  19. Harlow E, Lane D (2006) Immunoaffinity purification: coupling antibodies to protein a or g bead columns. CSH Protoc 2006(1), doi: 10.1101/pdb.prot4303

    Google Scholar 

  20. Labugger R, Organ L, Collier C, Atar D, Van Eyk JE (2000) Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation 102(11):1221–1226

    Article  CAS  PubMed  Google Scholar 

  21. Cohen PT, Cohen P (1989) Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221. Biochem J 260(3):931–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhuo S, Clemens JC, Hakes DJ, Barford D, Dixon JE (1993) Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase. J Biol Chem 268(24):17754–17761

    CAS  PubMed  Google Scholar 

  23. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682–1686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Konig C, Maekawa H, Schiebel E (2010) Mutual regulation of cyclin-dependent kinase and the mitotic exit network. J Cell Biol 188(3):351–368

    Article  PubMed Central  PubMed  Google Scholar 

  25. Geymonat M, Spanos A, Sedgwick SG (2007) A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene 399(2):120–128

    Article  CAS  PubMed  Google Scholar 

  26. Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395–401

    Article  CAS  PubMed  Google Scholar 

  27. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864

    Article  CAS  PubMed  Google Scholar 

  28. Meitinger F, Boehm ME, Hofmann A, Hub B, Zentgraf H, Lehmann WD, Pereira G (2011) Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis. Genes Dev 25(8):875–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mah AS, Elia AE, Devgan G, Ptacek J, Schutkowski M, Snyder M, Yaffe MB, Deshaies RJ (2005) Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem 6:22

    Article  PubMed Central  PubMed  Google Scholar 

  30. Geymonat M, Spanos A, Walker PA, Johnston LH, Sedgwick SG (2003) In vitro regulation of budding yeast Bfa1/Bub2 GAP activity by Cdc5. J Biol Chem 278(17):14591–14594, doi: 10.1074/jbc.C300059200

    Article  CAS  PubMed  Google Scholar 

  31. Shirayama M, Toth A, Galova M, Nasmyth K (1999) APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402(6758):203–207, doi: 10.1038/46080

    Article  CAS  PubMed  Google Scholar 

  32. Kinoshita E, Kinoshita-Kikuta E, Koike T (2014) Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome. Biochim Biophys Acta, doi: 10.1016/j.bbapap.2014.10.004

    Google Scholar 

  33. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962

    Article  CAS  PubMed  Google Scholar 

  34. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15(10B):963–972

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislene Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Meitinger, F., Palani, S., Pereira, G. (2016). Detection of Phosphorylation Status of Cytokinetic Components. In: Sanchez-Diaz, A., Perez, P. (eds) Yeast Cytokinesis. Methods in Molecular Biology, vol 1369. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3145-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3145-3_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3144-6

  • Online ISBN: 978-1-4939-3145-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics