Skip to main content

Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

  • Protocol
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

This chapter gives an overview of the most common F-actin-perturbing substances that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. These substances can be divided into two major subclasses: F-actin-stabilizing and -polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and -polymerizing agent, which may even have anticancer activities. Cytochalasins, derived from fungi, show an F-actin-severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin.

For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci 63(18):2119–2134. doi:10.1007/s00018-006-6157-9

    Article  CAS  PubMed  Google Scholar 

  2. Oertel A, Holzinger A, Lütz-Meindl U (2003) Involvement of myosin in intracellular motility and cytomorphogenesis in Micrasterias. Cell Biol Int 27(12):977–986. doi:10.1016/j.cellbi.2003.07.004

    Article  CAS  PubMed  Google Scholar 

  3. Guerriero CJ, Weisz OA (2007) N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. Am J Physiol Cell Physiol 292(4):C1562–C1566. doi:10.1152/ajpcell.00426.2006

    Article  CAS  PubMed  Google Scholar 

  4. Lynen F, Wieland U (1937) Über die Giftstoffe des Knollenblätterpilzes IV. Justus Liebigs Ann Chem 533(1):93–117. doi:10.1002/jlac.19385330105

    Article  CAS  Google Scholar 

  5. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105(4):1473–1478. doi:10.1083/jcb.105.4.1473

    Article  CAS  PubMed  Google Scholar 

  6. Spector I, Braet F, Shochet NR et al (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47(1):18–37. doi:10.1002/(SICI)1097-0029(19991001)47:1<18:AID-JEMT3>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  7. Bubb MR, Spector I, Beyer BB et al (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275(7):5163–5170

    Article  CAS  PubMed  Google Scholar 

  8. Kunze B, Jansen R, Sasse F et al (1995) Chondramides A-D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (Myxobacteria). Production, physico-chemical and biological properties. J Antibiot 48(11):1262–1266. doi:10.7164/antibiotics.48.1262

    Article  CAS  PubMed  Google Scholar 

  9. Sasse F, Kunze B, Gronewold TMA et al (1998) The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J Natl Cancer Inst 90(20):1559–1563. doi:10.1093/jnci/90.20.1559

    Article  CAS  PubMed  Google Scholar 

  10. Waldmann H, Hu T, Renner S et al (2008) Totalsynthese von chondramid C und bindung an F-aktin. Angew Chem 120(34):6573–6577. doi:10.1002/ange.200801010

    Article  Google Scholar 

  11. Sawitzky H, Liebe S, Willingale-Theune J et al (1999) The anti-proliferative agent jasplakinolide rearranges the actin cytoskeleton of plant cells. Eur J Cell Biol 78(6):424–433. doi:10.1016/S0171-9335(99)80085-5

    Article  CAS  PubMed  Google Scholar 

  12. Peterson JR, Mitchison TJ (2002) Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol 9(12):1275–1285. doi:10.1016/S1074-5521(02)00284-3

    Article  CAS  PubMed  Google Scholar 

  13. Matthews JB, Smith JA, Hrnjez BJ (1997) Effects of F-actin stabilization or disassembly on epithelial Cl- secretion and Na-K-2Cl cotransport. Am J Physiol Cell Physiol 272(1):C254–C262

    CAS  Google Scholar 

  14. Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett 27(25):2797–2800. doi:10.1016/S0040-4039(00)84645-6

    Article  CAS  Google Scholar 

  15. Braekman JC, Daloze D, Moussiaux B et al (1987) Jaspamide from the marine sponge Jaspis johnstoni. J Nat Prod 50(5):994–995. doi:10.1021/np50053a048

    Article  CAS  Google Scholar 

  16. Zabriskie TM, Klocke JA, Ireland CM et al (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108(11):3123–3124. doi:10.1021/ja00271a062

    Article  CAS  Google Scholar 

  17. Fabian I, Halperin D, Lefter S et al (1999) Alteration of actin organization by Jaspamide inhibits ruffling, but not phagocytosis or oxidative burst, in HL-60 cells and human monocytes. Blood 93(11):3994–4005

    CAS  PubMed  Google Scholar 

  18. Terracciano S, Bruno I, D’Amico E et al (2008) Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting Jaspamide. Bioorg Med Chem 16(13):6580–6588. doi:10.1016/j.bmc.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  19. Bubb MR, Senderowicz AM, Sausville EA et al (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269(21):14869–14871

    CAS  PubMed  Google Scholar 

  20. Holzinger A, Meindl U (1997) Jasplakinolide, a novel actin targeting peptide, inhibits cell growth and induces actin filament polymerization in the green alga Micrasterias. Cell Motil Cytoskeleton 38(4):365–372. doi:10.1002/(SICI)1097-0169(1997)38:4<365:AID-CM6>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  21. Sheikh S, Gratzer WB, Pinder JC et al (1997) Actin polymerisation regulates integrin-mediated adhesion as well as rigidity of neutrophils. Biochem Biophys Res Commun 238(3):910–915. doi:10.1006/bbrc.1997.7407

    Article  CAS  PubMed  Google Scholar 

  22. Lee E, Shelden EA, Knecht DA (1998) Formation of F-actin aggregates in cells treated with actin stabilizing drugs. Cell Motil Cytoskeleton 39(2):122–133. doi:10.1002/(SICI)1097-0169(1998)39:2<122:AID-CM3>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  23. Visegrády B, Lorinczy D, Hild G et al (2005) A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett 579(1):6–10. doi:10.1016/j.febslet.2004.11.023

    Article  PubMed  Google Scholar 

  24. Murray LM, Johnson A, Diaz MC et al (1997) Geographic variation in the tropical marine sponge Jaspis cf. johnstoni: an unexpected source of new terpene-benzenoids. J Org Chem 62:5638–5641

    Article  CAS  Google Scholar 

  25. Fabian I, Shur I, Bleiberg I et al (1995) Growth modulation and differentiation of acute myeloid leukemia cells by jaspamide. Exp Hematol 23(7):583–587

    CAS  PubMed  Google Scholar 

  26. Ayscough KR, Stryker J, Pokala N et al (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137(2):399–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chu KS, Negrete GR, Konopelski JP (1991) Asymmetric total synthesis of (+)-jasplakinolide. J Org Chem 56(17):5196–5202. doi:10.1021/jo00017a037

    Article  CAS  Google Scholar 

  28. Inman W, Crews P (1989) Novel marine sponge-derived amino acids. 8. Conformational analysis of jasplakinolide. J Am Chem Soc 111(8):2822–2829. doi:10.1021/ja00190a013

    Article  CAS  Google Scholar 

  29. Kahn M, Nakanishi H, Su T et al (1991) Design and synthesis of nonpeptide mimetics of jaspamide. Int J Pept Protein Res 38(4):324–334

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh AK, Moon DK (2007) Enantioselective total synthesis of +-jasplakinolide. Org Lett 9(12):2425–2427. doi:10.1021/ol070855h

    Article  CAS  PubMed  Google Scholar 

  31. Scott VR, Boehme R, Matthews TR (1988) New class of antifungal agents: jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis species. Antimicrob Agents Chemother 32(8):1154–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hable WE, Miller NR, Kropf DL (2003) Polarity establishment requires dynamic actin in fucoid zygotes. Protoplasma 221(3-4):193–204. doi:10.1007/s00709-002-0081-0

    CAS  PubMed  Google Scholar 

  33. Ou GS, Chen ZL, Yuan M (2002) Jasplakinolide reversibly disrupts actin filaments in suspension-cultured tobacco BY-2 cells. Protoplasma 219(3-4):168–175. doi:10.1007/s007090200018

    Article  CAS  PubMed  Google Scholar 

  34. Cárdenas L, Lovy-Wheeler A, Wilsen KL et al (2005) Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil Cytoskeleton 61(2):112–127. doi:10.1002/cm.20068

    Article  PubMed  Google Scholar 

  35. Thomas SG, Huang S, Li S et al (2006) Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol 174(2):221–229. doi:10.1083/jcb.200604011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Senderowicz AM, Kaur G, Sainz E et al (1995) Jasplakinolide’s inhibition of the growth of prostate carcinoma cells in vitro with disruption of the actin cytoskeleton. J Natl Cancer Inst 87(1):46–51

    Article  CAS  PubMed  Google Scholar 

  37. da Costa SR, Yarber FA, Zhang L et al (1998) Microtubules facilitate the stimulated secretion of beta-hexosaminidase in lacrimal acinar cells. J Cell Sci 111(Pt 9):1267–1276

    PubMed  Google Scholar 

  38. Holzinger A, Lütz-Meindl U (2001) Chondramides, novel cyclodepsipeptides from myxobacteria, influence cell development and induce actin filament polymerization in the green alga Micrasterias. Cell Motil Cytoskeleton 48(2):87–95. doi:10.1002/1097-0169(200102)48:2<87:AID-CM1000>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  39. Jansen R, Kunze B, Reichenbach H et al. (1996) Chondramides A-D, new cytostatic and antifungal cyclodepsipeptides from Chondromyces crocatus (myxobacteria): isolation and structure elucidation. Liebigs Ann 2:285–290

    Google Scholar 

  40. Ma CI, Diraviyam K, Maier ME et al (2013) Synthetic chondramide A analogues stabilize filamentous actin and block invasion by Toxoplasma gondii. J Nat Prod 76(9):1565–1572. doi:10.1021/np400196w

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Foerster F, Braig S, Moser C et al (2014) Targeting the actin cytoskeleton: selective antitumor action via trapping PKCε. Cell Death Dis 5:e1398. doi:10.1038/cddis.2014.363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Menhofer MH, Kubisch R, Schreiner L et al (2014) The actin targeting compound Chondramide inhibits breast cancer metastasis via reduction of cellular contractility. PLoS One 9(11):e112542. doi:10.1371/journal.pone.0112542

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125. doi:10.1146/annurev.arplant.57.032905.105206

    Article  CAS  PubMed  Google Scholar 

  44. Url T, Höftberger M, Meindl U (1993) Cytochalasin B influences dictyosomal vesicle production and mophogenesis in the desmid Euastrum. J Phycol 29(5):667–674. doi:10.1111/j.0022-3646.1993.00667.x

    Article  CAS  Google Scholar 

  45. Höftberger M, Lütz-Meindl U (1999) Septum formation in the desmid Xanthidium (Chlorophyta): effects of cytochalasin D and latruculin B suggest the involvement of actin microfilaments. J Phycol 35(4):768–777. doi:10.1046/j.1529-8817.1999.3540768.x

    Article  Google Scholar 

  46. Foissner I, Wasteneys GO (2007) Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. Plant Cell Physiol 48(4):585–597. doi:10.1093/pcp/pcm030

    Article  CAS  PubMed  Google Scholar 

  47. Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11(12):2349–2363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Scherlach K, Boettger D, Remme N et al (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27(6):869–886. doi:10.1039/b903913a

    Article  CAS  PubMed  Google Scholar 

  49. Bonder EM (1986) Cytochalasin B slows but does not prevent monomer addition at the barbed end of the actin filament. J Cell Biol 102(1):282–288. doi:10.1083/jcb.102.1.282

    Article  CAS  PubMed  Google Scholar 

  50. Aldridge DC, Armstrong JJ, Speake RN et al. (1967) The cytochalasins, a new class of biologically active mould metabolites. Chem. Commun. (London) (1): 26. doi: 10.1039/c19670000026

  51. Rothweiler W, Tamm C (1966) Isolation and structure of Phomin. Experientia 22(11):750–752. doi:10.1007/BF01901360

    Article  CAS  Google Scholar 

  52. Coué M, Brenner SL, Spector I et al (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett 213(2):316–318. doi:10.1016/0014-5793(87)81513-2

    Article  PubMed  Google Scholar 

  53. Spector I, Shochet N, Kashman Y et al (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219(4584):493–495. doi:10.1126/science.6681676

    Article  CAS  PubMed  Google Scholar 

  54. Baluska F, Jasik J, Edelmann HG et al (2001) Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev Biol 231(1):113–124. doi:10.1006/dbio.2000.0115

    Article  CAS  PubMed  Google Scholar 

  55. Holzinger A, Wasteneys GO, Lütz C (2007) Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna. Plant Biol (Stuttg) 9(3):400–410. doi:10.1055/s-2006-924727

    Article  CAS  Google Scholar 

  56. Carmely S, Kashman Y (1985) Structure of swinholide-a, a new macrolide from the marine sponge Theonella swinhoei. Tetrahedron Lett 26(4):511–514. doi:10.1016/S0040-4039(00)61925-1

    Article  CAS  Google Scholar 

  57. Bubb MR, Spector I, Bershadsky AD et al (1995) Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem 270(8):3463–3466

    Article  CAS  PubMed  Google Scholar 

  58. Klenchin VA, King R, Tanaka J et al (2005) Structural basis of swinholide A binding to actin. Chem Biol 12(3):287–291. doi:10.1016/j.chembiol.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  59. Posey SC, Bierer BE (1999) Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. J Biol Chem 274(7):4259–4265

    Article  CAS  PubMed  Google Scholar 

  60. Braet F, Spector I, de Zanger R et al (1998) A novel structure involved in the formation of liver endothelial cell fenestrae revealed by using the actin inhibitor misakinolide. Proc Natl Acad Sci U S A 95(23):13635–13640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Shurety W, Stewart NL, Stow JL (1998) Fluid-phase markers in the basolateral endocytic pathway accumulate in response to the actin assembly-promoting drug Jasplakinolide. Mol Biol Cell 9(4):957–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Shaw MK, Tilney LG (1999) Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. Proc Natl Acad Sci U S A 96(16):9095–9099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sheahan MB, Staiger CJ, Rose RJ et al (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136(4):3968–3978. doi:10.1104/pp.104.049411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Voigt B, Timmers AC, Samaj J et al (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84(6):595–608. doi:10.1016/j.ejcb.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  65. Meindl U (1990) Effects of temperature on cytomomorphogenesis and ultrastructure of Micrasterias denticulata Bréb. Protoplasma 157:3–18

    Article  Google Scholar 

  66. Meindl U, Lancelle S, Hepler PK (1992) Vesicle production and fusion during lobe formation in Micrasterias visualized by high-pressure freeze fixation. Protoplasma 170(3-4):104–114. doi:10.1007/BF01378786

    Article  Google Scholar 

  67. Holzinger A, de Ruijter N, Emons AM et al (1999) Spectrin-like proteins in green algae (Desmidiaceae). Cell Biol Int 23(5):335–344. doi:10.1006/cbir.1999.0365

    Article  CAS  PubMed  Google Scholar 

  68. Baluska F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103(1):191–200

    Google Scholar 

  69. Chichili GR, Rodgers W (2007) Clustering of membrane raft proteins by the actin cytoskeleton. J Biol Chem 282(50):36682–36691. doi:10.1074/jbc.M702959200

    Article  CAS  PubMed  Google Scholar 

  70. de Marino S, Festa C, D’Auria MV et al (2011) Swinholide J, a potent cytotoxin from the marine sponge Theonella swinhoei. Mar Drugs 9(6):1133–1141. doi:10.3390/md9061133

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ilse Foissner, University of Salzburg, for providing the images in Fig. 3. This chapter was supported by FWF grant P24242-B16 to A.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Holzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Holzinger, A., Blaas, K. (2016). Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics