Skip to main content

Silica Nanomaterials

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1830 Accesses

Abstract

Ultrafine mechanisms are efficiently working in biological systems. Fabrication of desired nanostructured materials has been paid much attention in biology, biochemistry, and pharmaceutical sciences. For these demands, nanostructured inorganic materials have to be more utilized in biological pharmaceutical fields. Among numerous candidates of inorganic materials, silica is the strongest candidate for use because silica is very abundant in nature and has low toxicity with huge knowledge on nanostructure fabrication. In this chapter, mesoporous silica and layer-by-layer assembly are first introduced, followed by description of emerging materials such as silica flake-shell capsule and silica nanostructure plate with examples for their usages in drug delivery and gene transfections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ariga K, Ji Q, Hill JP, Kawazoe N, Chen G (2009) Supramolecular approaches to biological therapy. Expert Opin Biol Ther 9:307

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323

    Article  CAS  PubMed  Google Scholar 

  3. Ariga K, Hill JP (2011) Monolayers at air-water interfaces: from origins-of-life to nanotechnology. Chem Rec 11:199

    Article  CAS  PubMed  Google Scholar 

  4. Ariga K, Ji Q, McShane MJ, Lvov YM, Vinu A, Hill JP (2012) Inorganic nanoarchitectonics for biological applications. Chem Mater 24:728

    Article  CAS  Google Scholar 

  5. Ariga K, Ishihara S, Abe H, Li M, Hill JP (2012) Materials nanoarchitectonics for environmental remediation and sensing. J Mater Chem 22:2369

    Article  CAS  Google Scholar 

  6. Ariga K, Ji Q, Mori T, Naito M, Yamauchi Y, Abe H, Hill JP (2013) Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev 42:6322

    Article  CAS  PubMed  Google Scholar 

  7. Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:014109

    Article  Google Scholar 

  8. Ariga K, Hu X, Mandal S, Hill JP (2010) By what means should nanoscaled materials be constructed: molecule, medium, or human? Nanoscale 2:198

    Article  CAS  PubMed  Google Scholar 

  9. Ariga K, Lee MV, Mori T, Yu X-Y, Hill JP (2010) Two-dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interface Sci 154:20

    Article  CAS  PubMed  Google Scholar 

  10. Ariga K, Ji Q, Hill JP, Vinu A (2010) Supramolecular materials from inorganic building blocks. J Inorg Organomet Polym 20:1

    Article  CAS  Google Scholar 

  11. Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol 11:1

    Article  CAS  PubMed  Google Scholar 

  12. Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158

    Article  CAS  PubMed  Google Scholar 

  13. Ramanathan M, Kilbey Michael S II, Ji Q, Hill JP, Ariga K (2012) Materials self-assembly and fabrication in confined spaces. J Mater Chem 22:10389

    Article  CAS  Google Scholar 

  14. Li M, Ishihara S, Ji Q, Akada M, Hill JP, Ariga K (2012) Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Sci Technol Adv Mater 13:053001

    Article  Google Scholar 

  15. Ramanathan M, Shrestha LK, Mori T, Ji Q, Hill JP, Ariga K (2013) Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys 15:10580

    Article  CAS  PubMed  Google Scholar 

  16. Ariga K, Mori T, Hill JP (2013) Interfacial nanoarchitectonics: lateral and vertical, static and dynamic. Langmuir 29:8459

    Article  CAS  PubMed  Google Scholar 

  17. Shrestha LK, Ji Q, Mori T, Miyazawa K, Yamauchi Y, Hill JP, Ariga K (2013) Fullerene nanoarchitectonics: from zero to higher dimensions. Chem Asian J 8:1662

    Article  CAS  PubMed  Google Scholar 

  18. Ariga K, Mori T, Akamatsu M, Hill JP (2014) Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. Thin Solid Films 554:32

    Article  CAS  Google Scholar 

  19. Hill JP, Shrestha LK, Ishihara S, Ji Q, Ariga K (2014) Self-assembly: from amphiphiles to chromophores and beyond. Molecules 19:8589

    Article  PubMed  Google Scholar 

  20. Vinu A, Mori T, Ariga K (2006) New families of mesoporous materials. Sci Technol Adv Mater 7:753

    Article  CAS  Google Scholar 

  21. Ariga K, Ji Q, Hill JP, Vinu A (2009) Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter 5:3562

    Article  CAS  Google Scholar 

  22. Alam S, Anand C, Ariga K, Mori T, Vinu A (2009) Unusual magnetic properties of size-controlled iron oxide nanoparticles grown in a nanoporous matrix with tunable pores. Angew Chem Int Ed 48:7358

    Article  CAS  Google Scholar 

  23. Ariga K, Vinu A, Yamauchi Y, Ji Q, Hill JP (2012) Nanoarchitectonics for mesoporous materials. Bull Chem Soc Jpn 85:1

    Article  CAS  Google Scholar 

  24. Shrestha LK, Yamauchi Y, Hill JP, Miyazawa K, Ariga K (2013) Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. J Am Chem Soc 135:586

    Article  CAS  PubMed  Google Scholar 

  25. Ariga K, Yamauchi Y, Ji Q, Yonamine Y, Hill JP (2014) Mesoporous sensor nanoarchitectonics. APL Mat 2:030701

    Article  Google Scholar 

  26. Chaikittisilp W, Muraoka K, Ji Q, Ariga K, Yamauchi Y (2014) Mesoporous architectures with highly crystallized frameworks. J Mater Chem A 2:12096

    Article  CAS  Google Scholar 

  27. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethulammonium kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988

    Article  CAS  Google Scholar 

  28. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359:710

    Article  CAS  Google Scholar 

  29. Kapoor MP, Inagaki S (2006) Highly ordered mesoporous organosilica hybrid materials. Bull Chem Soc Jpn 79:1463

    Article  CAS  Google Scholar 

  30. Ariga K, Vinu A, Miyahara M, Hill JP, Mori T (2007) One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. J Am Chem Soc 129:11022

    Article  CAS  PubMed  Google Scholar 

  31. Datta KKR, Subba Reddy BV, Ariga K, Vinu A (2010) Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew Chem Int Ed 49:5961

    Article  CAS  Google Scholar 

  32. Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864

    Article  CAS  PubMed  Google Scholar 

  33. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14

    Article  CAS  Google Scholar 

  34. Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y (2005) Preparation and characterization of well ordered hexagonal mesoporous carbon nitride. Adv Mater 17:1648

    Article  CAS  Google Scholar 

  35. Vinu A, Terrones M, Golberg D, Hishita S, Ariga K, Mori T (2005) Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem Mater 17:5887

    Article  CAS  Google Scholar 

  36. Yamauchi Y, Kuroda K (2008) Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem Asian J 3:664

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Ishihara S, Ariga K, Yamauchi Y (2012) All metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis. J Am Chem Soc 134:10819

    Article  CAS  PubMed  Google Scholar 

  38. Ariga K, Vinu A, Hill JP, Mori T (2007) Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coord Chem Rev 251:2562

    Article  CAS  Google Scholar 

  39. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46:792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mal MK, Fujiwara M, Tanaka Y (2003) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421:350

    Article  CAS  PubMed  Google Scholar 

  41. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A Mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451

    Article  CAS  PubMed  Google Scholar 

  42. Casasffls R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2006) New methods for anion recognition and signaling using nanoscopic gatelike scaffoldings. Angew Chem Int Ed 45:6661

    Article  Google Scholar 

  43. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319

    Article  CAS  PubMed  Google Scholar 

  44. Ariga K, Hill JP, Ji Q (2008) Biomaterials and biofunctionality in layered macromolecular assemblies. Macromol Biosci 8:981

    Article  CAS  PubMed  Google Scholar 

  45. Ariga K, Ji Q, Hill JP (2010) Enzyme-encapsulated layer-by-layer assemblies: current status and challenges toward ultimate nanodevices. Adv Polym Sci 229:51

    Article  CAS  Google Scholar 

  46. Ji Q, Honma I, Paek S-M, Akada M, Hill JP, Vinu A, Ariga K (2010) Layer-by-layer films of graphene and ionic liquid for highly selective gas sensing. Angew Chem Int Ed 49:9737

    Article  CAS  Google Scholar 

  47. Ariga K, McShane M, Lvov YM, Ji Q, Hill JP (2011) Layer-by-layer assembly for drug delivery and related applications. Expert Opin Drug Deliv 8:633

    Article  CAS  PubMed  Google Scholar 

  48. Li M, Ishihara S, Akada M, Liao M, Sang L, Hill JP, Krishnan V, Ma Y, Ariga K (2011) Electrochemical coupling layer-by-layer (ECC-LbL) assembly. J Am Chem Soc 133:7348

    Article  CAS  PubMed  Google Scholar 

  49. Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP (2011) Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 63:762

    Article  CAS  PubMed  Google Scholar 

  50. Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures towards materials nanoarchitectonics. NPG Asia Mater 4:e17

    Article  Google Scholar 

  51. Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KC-W, Hill JP (2014) Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43:36

    Article  CAS  Google Scholar 

  52. Rydzek G, Terentyeva TG, Pakdel A, Golberg D, Hill JP, Ariga K (2014) Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms. ACS Nano 8:5240

    Article  CAS  PubMed  Google Scholar 

  53. Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21:569

    Article  CAS  Google Scholar 

  54. Kirkland JJ (1965) Porous thin-layer modified glass bead supports for gas liquid chromatography. Anal Chem 37:1458

    Article  CAS  Google Scholar 

  55. Decher G, Hong J-D (1991) Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321

    Article  CAS  Google Scholar 

  56. Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process: II consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber Bunsen-Ges Phys Chem 95:1430

    Article  CAS  Google Scholar 

  57. Ji Q, Miyahara M, Hill JP, Acharya S, Vinu A, Yoon SB, Yu J-S, Sakamoto K, Ariga K (2008) Stimuli-free auto-modulated material release from mesoporous nanocompartment films. J Am Chem Soc 130:2376

    Article  CAS  PubMed  Google Scholar 

  58. Ji Q, Acharya S, Hill JP, Vinu A, Yoon SB, Yu J-S, Sakamoto K, Ariga K (2009) Hierarchic nanostructure for auto-modulation of material release: mesoporous nanocompartment films. Adv Funct Mater 19:1792

    Article  CAS  Google Scholar 

  59. Ariga K, Vinu A, Ji Q, Ohmori O, Hill JP, Acharya S, Koike J, Shiratori S (2008) A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. Angew Chem Int Ed 47:7254

    Article  CAS  Google Scholar 

  60. Ji Q, Yoon SB, Hill JP, Vinu A, Yu J-S, Ariga K (2009) Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc 131:4220

    Article  CAS  PubMed  Google Scholar 

  61. Ji Q, Guo C, Yu X, Ochs CJ, Hill JP, Caruso F, Nakazawa H, Ariga K (2012) Flake-shell capsules: adjustable inorganic structures. Small 8:2345

    Article  CAS  PubMed  Google Scholar 

  62. Manoharan Y, Ji Q, Yamazaki T, Chinnathambi S, Chen S, Singaravelu G, Hill JP, Ariga K, Hanagata N (2012) Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α. Int J Nanomedicine 7:3625

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Terentyeva TG, Matras A, Van Rossom W, Hill JP, Ji Q, Ariga K (2013) Bioactive flake-shell capsules: soft silica nanoparticles for efficient enzyme immobilization. J Mater Chem B 1:3248

    Article  CAS  Google Scholar 

  64. Ji Q, Hill JP, Ariga K (2013) Shell-adjustable hollow ‘soft’ silica spheres as a support for gold nanoparticles. J Mater Chem A 1:3600

    Article  CAS  Google Scholar 

  65. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R (2007) Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2:392

    Article  CAS  PubMed  Google Scholar 

  66. Fujita S, Ota E, Sasaki C, Takano K, Miyake M, Miyake J (2007) Highly efficient reverse transfection with siRNA in multiple wells of microtiter plates. J Biosci Bioeng 104:329

    Article  CAS  PubMed  Google Scholar 

  67. Villa-Diaz LG, Garcia-Perez JL, Krebsbach PH (2010) Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix. Stem Cells Dev 19:1949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Ji Q, Yamazaki T, Hanagata N, Lee MV, Hill JP, Ariga K (2012) Silica-based gene reverse transfection: upright nanosheet network for promoted DNA delivery to cell. Chem Commun 48:8496

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partly supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan and Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Ariga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ariga, K., Ji, Q. (2016). Silica Nanomaterials. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics