Skip to main content

Experimental Evolution and Resequencing Analysis of Yeast

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Experimental evolution of microbes is a powerful tool to study adaptation to strong selection, the mechanism of evolution and the development of new traits. The development of high-throughput sequencing methods has given researchers a new ability to cheaply and easily identify mutations genome wide that are selected during the course of experimental evolution. Here we provide a protocol for conducting experimental evolution of yeast using chemostats, including fitness measurement and whole genome sequencing of evolved clones or populations collected during the experiment. Depending on the number of generations appropriate for the experiment, the number of samples tested and the sequencing platform, this protocol takes from 1 month to several months to be completed, with the possibility of processing several strains or mutants at once.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Monod J (1950) La technique de culture continue, theorie et applications. Ann Inst Pasteur 79:390–410

    CAS  Google Scholar 

  2. Novick A, Szilard L (1950) Description of the chemostat. Science 112(2920):715–716

    Article  CAS  PubMed  Google Scholar 

  3. Skelly DA et al (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23(9):1496–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dykhuizen DE, Hartl DL (1983) Selection in chemostats. Microbiol Rev 47(2):150–168

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302(5908):495–500

    Article  CAS  PubMed  Google Scholar 

  6. Dunham MJ et al (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99(25):16144–16149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gresham D et al (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4(12), e1000303

    Article  PubMed Central  PubMed  Google Scholar 

  8. Payen C et al (2014) The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. G3 (Bethesda) 4(3):399–409

    Article  Google Scholar 

  9. Gresham D et al (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci U S A 107(43):18551–18556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kvitek DJ, Sherlock G (2013) Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet 9(11), e1003972

    Article  PubMed Central  PubMed  Google Scholar 

  11. Brown CJ, Todd KM, Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol 15(8):931–942

    Article  CAS  PubMed  Google Scholar 

  12. Wenger JW et al (2011) Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7(8), e1002202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hong J, Gresham D (2014) Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 10(1), e1004041

    Article  PubMed Central  PubMed  Google Scholar 

  14. Adams J, Paquin C, Oeller PW, Lee LW (1985) Physiological characterization of adaptive clones in evolving populations of the yeast, Saccharomyces cerevisiae. Genetics 110(2):173–185

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhang E, Ferenci T (1999) OmpF changes and the complexity of Escherichia coli adaptation to prolonged lactose limitation. FEMS Microbiol Lett 176(2):395–401

    Article  CAS  PubMed  Google Scholar 

  16. Miller AW, Befort C, Kerr EO, Dunham MJ (2013) Design and use of multiplexed chemostat arrays. J Vis Exp (72):e50262

    Google Scholar 

  17. Ziv N, Brandt NJ, Gresham D (2013) The use of chemostats in microbial systems biology. J Vis Exp (80):e50168

    Google Scholar 

  18. Adey A et al (2010) Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 11(12):R119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57(2-3):267–272

    Article  CAS  PubMed  Google Scholar 

  20. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  21. Alkan C et al (2009) Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet 41(10):1061–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Karakoc E et al (2011) Detection of structural variants and indels within exome data. Nat Methods 9(2):176–178

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Emily Mitchell and Giang T. Ong for their protocols. This work was supported by grants R01 GM094306 and P41 GM103533 from the National Institute of General Medical Sciences from the National Institutes of Health, and National Science Foundation grant 1120425. MJD is a Rita Allen Foundation Scholar, and a Fellow in the Genetic Networks program at the Canadian Institute for Advanced Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitreya J. Dunham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Payen, C., Dunham, M.J. (2016). Experimental Evolution and Resequencing Analysis of Yeast. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics