Skip to main content

On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Genetic variation within species is the substrate of evolution. Epistasis, which designates the non-additive interaction between loci affecting a specific phenotype, could be one of the possible outcomes of genetic diversity. Dissecting the basis of such interactions is of current interest in different fields of biology, from exploring the gene regulatory network, to complex disease genetics, to the onset of reproductive isolation and speciation. We present here a general workflow to identify epistatic interactions between independently evolving loci in natural populations of the yeast Saccharomyces cerevisiae. The idea is to exploit the genetic diversity present in the species by evaluating a large number of crosses and analyzing the phenotypic distribution in the offspring. For a cross of interest, both parental strains would have a similar phenotypic value, whereas the resulting offspring would have a bimodal distribution of the phenotype, possibly indicating the presence of epistasis. Classical segregation analysis of the tetrads uncovers the penetrance and complexity of the interaction. In addition, this segregation could serve as the guidelines for choosing appropriate mapping strategies to narrow down the genomic regions involved. Depending on the segregation patterns observed, we propose different mapping strategies based on bulk segregant analysis or consecutive backcrosses followed by high-throughput genome sequencing. Our method is generally applicable to all systems with a haplodiplobiontic life cycle and allows high resolution mapping of interacting loci that govern various DNA polymorphisms from single nucleotide mutations to large-scale structural variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liti G, Louis EJ (2012) Advances in quantitative trait analysis in yeast. PLoS Genet 8(8):e1002912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Steinmetz LM et al (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416(6878):326–330

    Article  CAS  PubMed  Google Scholar 

  3. Deutschbauer AM, Davis RW (2005) Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 37(12):1333–1340

    Article  CAS  PubMed  Google Scholar 

  4. Nogami S, Ohya Y, Yvert G (2007) Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet 3(2):e31

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cubillos FA et al (2013) High-resolution mapping of complex traits with a four-parent advanced intercross yeast population. Genetics 195(3):1141–1155

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brion C et al (2013) Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics 14:681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Albert FW et al (2014) Genetics of single-cell protein abundance variation in large yeast populations. Nature 506(7489):494–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sinha H et al (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661–1670

    Article  PubMed Central  PubMed  Google Scholar 

  9. Smith EN, Kruglyak L (2008) Gene-environment interaction in yeast gene expression. PLoS Biol 6(4):e83

    Article  PubMed Central  PubMed  Google Scholar 

  10. Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7(11):e1002255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yang Y et al (2013) QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet 9(8):e1003693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Baryshnikova A et al (2013) Genetic interaction networks: toward an understanding of heritability. Annu Rev Genomics Hum Genet 14:111–133

    Article  CAS  PubMed  Google Scholar 

  13. Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5(8):618–625

    Article  CAS  PubMed  Google Scholar 

  14. Tong AH et al (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808–813

    Article  CAS  PubMed  Google Scholar 

  15. Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391

    Article  CAS  PubMed  Google Scholar 

  16. Costanzo M et al (2010) The genetic landscape of a cell. Science 327(5964):425–431

    Article  CAS  PubMed  Google Scholar 

  17. Cromie GA et al (2013) Genomic sequence diversity and population structure of Saccharomyces cerevisiae assessed by RAD-seq. G3 (Bethesda) 3(12):2163–2171

    Article  Google Scholar 

  18. Wilkening S et al (2014) An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae. Genetics 196(3):853–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Duveau F et al (2014) Mapping small effect mutations in Saccharomyces cerevisiae: impacts of experimental design and mutational properties. G3 (Bethesda) 4(7):1205–1216

    Article  CAS  Google Scholar 

  20. Ehrenreich IM et al (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464(7291):1039–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dobzhansky T (1937) Genetics and the origin of species. Columbia biological series. New York: Columbia Univ. Press. xvi, 364 p

    Google Scholar 

  22. Morrison JL et al (2006) A lock-and-key model for protein-protein interactions. Bioinformatics 22(16):2012–2019

    Article  CAS  PubMed  Google Scholar 

  23. Brauer MJ et al (2006) Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173(3):1813–1816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dunham MJ (2012) Two flavors of bulk segregant analysis in yeast. Methods Mol Biol 871:41–54

    Article  CAS  PubMed  Google Scholar 

  25. Hou J et al (2014) Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Curr Biol 24(10):1153–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  28. Voth WP et al (2001) Yeast vectors for integration at the HO locus. Nucleic Acids Res 29(12):E59–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schacherer J et al (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458(7236):342–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Liti G et al (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Muller LA et al (2011) Genome-wide association analysis of clinical vs. nonclinical origin provides insights into Saccharomyces cerevisiae pathogenesis. Mol Ecol 20(19):4085–4097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Skelly DA et al (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23(9):1496–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Schacherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hou, J., Schacherer, J. (2016). On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics