Skip to main content

Label-Free Quantitative Proteomics in Yeast

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith LM, Kelleher NL (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ntai I, Kim K, Fellers RT, Skinner OS, Smith AD IV, Early BP, Savaryn JP, LeDuc RD, Thomas PM, Kelleher NL (2014) Applying label-free quantitation to top down proteomics. Anal Chem 86(10):4961–4968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ (2014) The one hour yeast proteome. Mol Cell Proteomics 13(1):339–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Rost H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494(7436):266–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteomics 11(3):M111 013722

    Google Scholar 

  6. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254

    Article  PubMed  Google Scholar 

  7. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R (2010) Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468(7321):321–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775–818

    Google Scholar 

  9. Griffin TJ, Gygi SP, Rist B, Aebersold R, Loboda A, Jilkine A, Ens W, Standing KG (2001) Quantitative proteomic analysis using a MALDI quadrupole time-of-flight mass spectrometer. Anal Chem 73(5):978–986

    Article  CAS  PubMed  Google Scholar 

  10. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  11. Pan KT, Chen YY, Pu TH, Chao YS, Yang CY, Bomgarden RD, Rogers JC, Meng TC, Khoo KH (2014) Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxid Redox Signal 20(9):1365–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Google Scholar 

  13. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  14. Yao X, Afonso C, Fenselau C (2003) Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2(2):147–152

    Google Scholar 

  15. Heller M, Mattou H, Menzel C, Yao X (2003) Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. J Am Soc Mass Spectrom 14(7):704–718

    Google Scholar 

  16. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  17. de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7(6):R50

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dilworth DJ, Saleem RA, Rogers RS, Mirzaei H, Boyle J, Aitchison JD (2010) QTIPS: a novel method of unsupervised determination of isotopic amino acid distribution in SILAC experiments. J Am Soc Mass Spectrom 21(8):1417–1422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bicho CC, de Lima Alves F, Chen ZA, Rappsilber J, Sawin KE (2010) A genetic engineering solution to the “arginine conversion problem” in stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 9(7):1567–1577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    Article  CAS  PubMed  Google Scholar 

  21. Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965

    Article  CAS  PubMed  Google Scholar 

  22. Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518

    PubMed Central  PubMed  Google Scholar 

  23. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553

    Article  CAS  PubMed  Google Scholar 

  24. Mosley AL, Florens L, Wen Z, Washburn MP (2009) A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus. J Proteomics 72(1):110–120

    Google Scholar 

  25. Renvoise M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140–150

    Google Scholar 

  26. Mosley AL, Sardiu ME, Pattenden SG, Workman JL, Florens L, Washburn MP (2011) Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol Cell Proteomics 10(2):M110 000687

    Google Scholar 

  27. Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74(18):4741–4749

    Article  CAS  PubMed  Google Scholar 

  28. Tu C, Li J, Sheng Q, Zhang M, Qu J (2014) Systematic assessment of survey scan and MS2-based abundance strategies for label-free quantitative proteomics using high-resolution MS data. J Proteome Res 13(4):2069–2079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Neilson KA, Keighley T, Pascovici D, Cooke B, Haynes PA (2013) Label-free quantitative shotgun proteomics using normalized spectral abundance factors. Methods Mol Biol 1002:205–222

    Article  CAS  PubMed  Google Scholar 

  30. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4(10):1487–1502

    Article  CAS  PubMed  Google Scholar 

  31. Liu K, Zhang J, Wang J, Zhao L, Peng X, Jia W, Ying W, Zhu Y, Xie H, He F, Qian X (2009) Relationship between sample loading amount and peptide identification and its effects on quantitative proteomics. Anal Chem 81(4):1307–1314

    Article  CAS  PubMed  Google Scholar 

  32. Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJ, Schmidt A (2012) Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res 11(11):5145–5156

    Article  CAS  PubMed  Google Scholar 

  33. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  PubMed  Google Scholar 

  34. Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM, Zhang R, Aittokallio T, Schwikowski B (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics 8(4):650–672

    Article  CAS  PubMed  Google Scholar 

  35. Podwojski K, Eisenacher M, Kohl M, Turewicz M, Meyer HE, Rahnenfuhrer J, Stephan C (2010) Peek a peak: a glance at statistics for quantitative label-free proteomics. Expert Rev Proteomics 7(2):249–261

    Article  CAS  PubMed  Google Scholar 

  36. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  37. Nahnsen S, Bielow C, Reinert K, Kohlbacher O (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12(3):549–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sandin M, Teleman J, Malmstrom J, Levander F (2014) Data processing methods and quality control strategies for label-free LC-MS protein quantification. Biochim Biophys Acta 1844(1 Pt A):29–41

    Article  CAS  PubMed  Google Scholar 

  39. Tsou CC, Tsai CF, Tsui YH, Sudhir PR, Wang YT, Chen YJ, Chen JY, Sung TY, Hsu WL (2010) IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 9(1):131–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhang W, Zhang J, Xu C, Li N, Liu H, Ma J, Zhu Y, Xie H (2012) LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data. Proteomics 12(23–24):3475–3484

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Wen Z, Washburn MP, Florens L (2010) Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 82(6):2272–2281

    Article  CAS  PubMed  Google Scholar 

  42. Ahrne E, Molzahn L, Glatter T, Schmidt A (2013) Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics 13(17):2567–2578

    Article  CAS  PubMed  Google Scholar 

  43. Horvath A, Riezman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast (Chichester, England) 10(10):1305–1310

    Google Scholar 

  44. Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11(3):319–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Camadro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Léger, T., Garcia, C., Videlier, M., Camadro, JM. (2016). Label-Free Quantitative Proteomics in Yeast. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics