Skip to main content

Change-Point Detection Under Dependence Based on Two-Sample U-Statistics

  • Chapter
Asymptotic Laws and Methods in Stochastics

Part of the book series: Fields Institute Communications ((FIC,volume 76))

Abstract

We study the detection of change-points in time series. The classical CUSUM statistic for detection of jumps in the mean is known to be sensitive to outliers. We thus propose a robust test based on the Wilcoxon two-sample test statistic. The asymptotic distribution of this test can be derived from a functional central limit theorem for two-sample U-statistics. We extend a theorem of Csörgő and Horváth to the case of dependent data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babbel, B.: Invariance principles for U-statistics and von Mises functionals. J. Stat. Plan. Inference 22, 337–354 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Billinsgley, P.: Convergence of Probability Measures. 2nd edn. Wiley, New York (1999)

    Book  Google Scholar 

  3. Borovkova, S.A., Burton, R.M., Dehling, H.G.: Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation. Trans. Am. Math. Soc. 353, 4261–4318 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlstein, E.: The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann. Stat. 14, 1171–1179 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Csörgő, M., Horvath, L.: Invariance principles for changepoint problems. J. Multivar. Anal. 27, 151–168 (1988)

    Article  Google Scholar 

  6. Csörgő, M., Horvath, L.: Limit Theorems in Change Point Analysis. Wiley, New York (1997)

    Google Scholar 

  7. Dehling, H.: Limit theorems for sums of weakly dependent Banach space valued random variables. Z. für Wahrscheinlichkeitstheorie und verwandte Gebiete 63, 393–432 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dehling, H., Fried, R.: Asymptotic distribution of two-sample empirical U-quantiles with applications to robust tests for shifts in location. J. Multivar. Anal. 105, 124–140 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dehling, H., Fried, R., Sharipov, O.Sh., Vogel, D., Wornowizki, M.: Estimation of the variance of partial sums of dependent processes. Stat. Probab. Lett. 83, 141–147 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dehling, H., Rooch, A., Taqqu, M.S.: Nonparametric change-point tests for long-range dependent data. Scand. J. Stat. 40, 153–173 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Denker, M.: Asymptotic Distribution Theory in Nonparametrics Statistics. Vieweg Verlag, Braunschweig/Wiesbaden (1985)

    Book  Google Scholar 

  12. Denker, M., Keller, G.: On U-statistics and v. Mises’ statistics for weakly dependent processes. Z. für Wahrscheinlichkeitstheorie und verwandte Gebiete 64, 505–522 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Denker, M., Keller, G.: Rigorous statistical procedures for data from dynamical systems. J. Stat. Phys. 44, 67–93 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ibragimov, I.A., Linnik, Yu.V.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  16. Leucht, A.: Degenerate U- and V-statistics under weak dependence: asymptotic theory and bootstrap consistency. Bernoulli 18, 552–585 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rooch, A.: Change-point tests for long-range dependent data. Dissertation, Ruhr-Universität Bochum (2012)

    Google Scholar 

  18. Sen, P.K.: On the properties of U-statistics when the observations are not independent. I. Estimation of non-serial parameters in some stationary stochastic processes. Calcutta Stat. Assoc. Bull. 12, 69–92 (1963)

    MATH  Google Scholar 

  19. Sen, P.K.: Limiting behavior of regular functionals of empirical distributions for stationary ∗-mixing processes. Z. für Wahrscheinlichkeitstheorie und Verwandte Gebiete 25, 71–82 (1972)

    Article  MATH  Google Scholar 

  20. Sharipov, O.Sh., Wendler, M.: Bootstrap for the sample mean and for U-statistics of mixing and near-epoch dependent processes. J. Nonparametric Stat. 24, 317–342 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wooldridge, J.M., White, H.: Some invariance principles and central limit theorems for dependent heterogeneous processes. Econ. Theory 4, 210–230 (1988)

    Article  MathSciNet  Google Scholar 

  22. Yoshihara, K.-I.: Limiting behavior of U-statistics for stationary, absolutely regular processes. Z. für Wahrscheinlichkeitstheorie und verwandte Gebiete 35, 237–252 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their very careful reading of an earlier version of this manuscript, and for their many thoughtful comments that helped to improve the presentation of the paper. This research was supported by the Collaborative Research Center 823, Project C3 Analysis of Structural Change in Dynamic Processes, of the German Research Foundation DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herold Dehling .

Editor information

Editors and Affiliations

Appendix: Some Auxiliary Results from the Literature

Appendix: Some Auxiliary Results from the Literature

In this section, we collect some known lemmas and theorems for weakly dependent data. We start with some results on the behaviour of partials sums:

Lemma 3 (Borovkova, Burton, Dehling [3], Lemma 2.23).

Let \((X_{k})_{k\in \mathbb{Z}}\) be a 1-approximating functional with constants (ak)k≥0 of an absolutely regular process with mixing coefficients (β(k))k≥0. Suppose moreover that EXi = 0 and that one of the following two conditions holds:

  1. 1.

    X 0 is bounded a.s. and \(\sum _{k=0}^{\infty }(a_{k} +\beta (k)) <\infty.\)

  2. 2.

    \(E\vert X_{0}\vert ^{2+\delta } <\infty\) and \(\sum _{k=0}^{\infty }(a_{k}^{ \frac{\delta }{ 1+\delta } } +\beta ^{ \frac{\delta }{1+\delta } }(k)) <\infty.\)

Then, as \(N \rightarrow \infty\) ,

$$\displaystyle{ \frac{1} {N}ES_{N}^{2} \rightarrow EX_{ 0}^{2} + 2\sum _{ j=1}^{\infty }E(X_{ 0}X_{j}) }$$
(75)

and the sum on the r.h.s. converges absolutely.

Lemma 4 (Borovkova, Burton, Dehling [3], Lemma 2.24).

Let \((X_{k})_{k\in \mathbb{Z}}\) be a 1-approximating functional with constants (a k ) of an absolutely regular process with mixing coefficients (β(k)) k≥0 . Suppose moreover that EX i = 0 and that one of the following two conditions holds:

  1. 1.

    X 0 is bounded a.s. and \(\sum _{k=0}^{\infty }k^{2}(a_{k} +\beta (k)) <\infty.\)

  2. 2.

    \(E\vert X_{0}\vert ^{4+\delta } <\infty\) and \(\sum _{k=0}^{\infty }k^{2}(a_{k}^{ \frac{\delta }{ 3+\delta } } +\beta ^{ \frac{\delta }{4+\delta } }(k)) <\infty.\)

Then there exits a constant C such that

$$\displaystyle{ ES_{N}^{4} \leq CN^{2}. }$$
(76)

Theorem 4 (Borovkova, Burton, Dehling [3], Theorem 4).

Let \((X_{k})_{k\in \mathbb{Z}}\) be a 1-approximating functional with constants (a k ) k≥0 of an absolutely regular process with mixing coefficients (β(k)) k≥0 . Suppose moreover that EX i = 0, \(E\vert X_{0}\vert ^{4+\delta } <\infty\) and that

$$\displaystyle{ \sum _{k=0}^{\infty }k^{2}(a_{ k}^{ \frac{\delta }{ 3+\delta } } +\beta ^{ \frac{\delta }{4+\delta } }(k)) <\infty, }$$
(77)

for some δ > 0. Then, as \(n \rightarrow \infty,\)

$$\displaystyle{ \frac{1} {\sqrt{n}}\sum _{i=1}^{n}X_{ i} \rightarrow \mathcal{N}(0,\sigma ^{2}), }$$
(78)

where \(\sigma ^{2} = EX_{0}^{2} + 2\sum _{j=1}^{\infty }E(X_{0}X_{j}).\) In case \(\sigma ^{2} = 0\) , \(\mathcal{N}(0,0)\) denotes the point mass at the origin. If X 0 is bounded, the CLT continues to hold if  (77) is replaced by the condition that \(\sum _{k=0}^{\infty }k^{2}(a_{k} +\beta (k)) <\infty\) .

An important tool to derive asymptotic results for weakly dependent data are coupling methods. We will apply this method in the proof of Proposition 2.

Theorem 5 (Borovkova, Burton, Dehling [3], Theorem 3).

Let \((X_{n})_{n\in \mathbb{N}}\) be a 1-approximating functional with summable constants (a k ) k≥0 of an absolutely regular process with mixing rate (β(k)) k≥0 .  Then given integers K,L and N, we can approximate the sequence of \((K + 2L,N)-\) blocks (B s ) s≥1 by a sequence of independent blocks \((B_{s}^{{\prime}})_{s\geq 1}\) with the same marginal distribution in such a way that

$$\displaystyle{ P(\vert \vert B_{s} - B_{s}^{{\prime}}\vert \vert \leq 2\alpha _{ L}) \geq 1 -\beta (K) - 2\alpha _{L}, }$$
(79)

where \(\alpha _{L}:= \left (2\sum _{l=L}^{\infty }a_{l}\right )^{1/2}.\)

In statistical application, the question of how to estimate \(\sigma ^{2}\) is important. In the situation when the observations are a functional of α-mixing process, Dehling et al. [10] propose the estimation of the variance of partial sums of dependent processes by the subsampling estimator

$$\displaystyle{ \hat{D}_{n} = \frac{1} {[n/l_{n}]}\sqrt{ \frac{\pi } {2}}\sum _{i=1}^{[n/l_{n}]}\frac{\vert \hat{T}_{i}(l_{n}) - l_{n}\tilde{U}_{n}\vert } {\sqrt{l_{n}}} }$$
(80)

with \(\hat{T}_{i}(l) =\sum _{ j=(i-1)l+1}^{il}F_{n}(X_{j})\) and \(\tilde{U}_{n} = \frac{1} {n}\sum _{j=1}^{n}F_{ n}(X_{j})\), where F n (⋅ ) is the empirical distribution function.

Theorem 6 (Dehling, Fried, Sharipov, Vogel, Wornowizki [9], Theorem 1.2).

Let (X k ) k≥1 be a stationary, 1-approximating functional of an α-mixing processes. Suppose that for some δ > 0, \(E\vert X_{1}\vert ^{2+\delta } <\infty\) , and that the mixing coefficients (α k ) k≥1 and the approximation constants (a k ) k≥1 satisfy

$$\displaystyle{ \sum _{k=1}^{\infty }(\alpha _{ k})^{ \frac{2} {2+\delta } } <\infty,\quad \sum _{k=1}^{\infty }(a_{k})^{\frac{1+\delta } {2+\delta } } <\infty. }$$
(81)

In addition, we assume that F is Lipschitz-continuous, that \(\alpha _{k} = O(n^{-8})\) and that \(a_{m} = O(m^{-12})\) . Then, as \(n \rightarrow \infty\) , \(l_{n} \rightarrow \infty\) and \(l_{n} = o(\sqrt{n})\) , we have \(\hat{D}_{n}\longrightarrow \sigma\) in L 2 .

To deal with the degenerate kernel g, we need to find upper bounds for the expectations \(E\left (g(X_{i_{1}},X_{j_{1}})g(X_{i_{2}},X_{j_{2}})\right )\), in terms of the maximal distance among the indices. Since 1 ≤ i 1 < i 2 ≤ [n λ] and \([n\lambda ] + 1 \leq j_{1} <j_{2} \leq n\), we get i 1 < i 2 < j 1 < j 2.

Lemma 5 (Dehling, Fried [8], Proposition 6.1).

Let (X n ) n≥1 be a 1-approximating functional with constants (a k ) k≥1 of an absolutely regular process with mixing coefficients (β(k)) k≥1 and let g(x,y) be a 1-continuous bounded degenerate kernel. Then we have

$$\displaystyle{ \vert E(g(X_{i_{1}},X_{j_{1}})g(X_{i_{2}},X_{j_{2}}))\vert \leq 4S\phi (a_{[k/3]}) + 8S^{2}(\sqrt{a_{ [k/3]}} +\beta ([k/3])) }$$
(82)

where \(S = \vert \sup _{x,y}g(x,y)\vert\) and \(k =\max \left \{i_{2} - i_{1},j_{1} - i_{2},j_{2} - j_{1}\right \}\) .

The following two results are useful for proving tightness of a stochastic process. The first one is used to control the fluctuation of maximum. Let ξ 1, , ξ n be random variables, and define \(S_{k} =\xi _{1} +\ldots +\xi _{k}\) (S 0 = 0), and \(M_{n} =\max _{0\leq k\leq n}\vert S_{k}\vert\).

Theorem 7 (Billingsley [2], Theorem 10.2).

Suppose that β ≥ 0 and α > 1∕2 and that there exist nonnegative numbers u 1 ,…,u n such that for all positive λ

$$\displaystyle{ P\left (\vert S_{j} - S_{i}\vert \geq \lambda \right ) \leq \frac{1} {\lambda ^{4\beta }} \left (\sum _{i<l\leq j}u_{l}\right )^{2\alpha },\quad 0 \leq i \leq j \leq n\quad, }$$
(83)

then for all positive λ

$$\displaystyle{ P\left (M_{n} \geq \lambda \right ) \leq \frac{K_{\beta,\alpha }} {\lambda ^{4\beta }} \left (\sum _{0<l\leq n}u_{l}\right )^{2\alpha }, }$$
(84)

where K β,α is a constant depending only on β and α.

Theorem 8 (Billingsley [2], Theorem 8.4).

The sequence {Y n }, defined by

$$\displaystyle{ Y _{n}(t) = \frac{1} {\sigma \sqrt{n}}S_{[nt]} + (nt - [nt]) \frac{1} {\sigma \sqrt{n}}\xi _{[nt]+1} }$$
(85)

is tight if for each ε > 0 there exist a λ > 1 and a \(n_{0} \in \mathbb{N}\) such that for n ≥ n 0

$$\displaystyle{ P\left (\max _{i\leq n}\vert S_{k+i} - S_{k}\vert \geq \lambda \sigma \sqrt{n}\right ) \leq \frac{\epsilon } {\lambda ^{2}}. }$$
(86)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dehling, H., Fried, R., Garcia, I., Wendler, M. (2015). Change-Point Detection Under Dependence Based on Two-Sample U-Statistics. In: Dawson, D., Kulik, R., Ould Haye, M., Szyszkowicz, B., Zhao, Y. (eds) Asymptotic Laws and Methods in Stochastics. Fields Institute Communications, vol 76. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3076-0_12

Download citation

Publish with us

Policies and ethics