Skip to main content

Determination of GPCR-Mediated cAMP Accumulation in Rat Striatal Synaptosomes

  • Protocol
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 110))

Abstract

G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors, thus representing the more investigated drug targets in the design of new therapeutic strategies. In this family of receptors, the binding of an agonist typically triggers the activation of heterotrimeric G proteins, which in turn control the propagation of secondary messenger molecules, such as cAMP, which play a key role in important physiological processes. Accordingly, determining GPCR-mediated cAMP accumulation in native tissue (i.e., synaptosomes) constitutes an important step in the pharmacological characterization of these receptors. Here, we describe the methodology used to assess GPCR-mediated cAMP accumulation in rat striatal synaptosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lohse MJ, Hein P, Hoffmann C et al (2008) Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 153(Suppl 1):S125–S132. doi:10.1038/sj.bjp.0707656

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134–142

    Article  CAS  PubMed  Google Scholar 

  3. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204. doi:10.1152/physrev.00003.2005

    Article  CAS  PubMed  Google Scholar 

  4. Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol Pharmacol 58:771–777

    CAS  PubMed  Google Scholar 

  5. Ferré S, Ciruela F, Woods A et al (2003) Glutamate mGluR5/adenosine A2A/dopamine D2 receptor interactions in the striatum. Implications for drug therapy in neuro-psychiatric disorders and drug abuse. Curr Med Chem Nerv Syst Agents 3:1–26

    Article  Google Scholar 

  6. Ferre S, Ciruela F, Quiroz C et al (2007) Adenosine receptor heteromers and their integrative role in striatal function. Sci World J 7:74–85. doi:10.1100/tsw.2007.211

    Article  Google Scholar 

  7. Kull B, Ferre S, Arslan G et al (1999) Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochem Pharmacol 58:1035–1045

    Article  CAS  PubMed  Google Scholar 

  8. Håkansson K, Galdi S, Hendrick J et al (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488. doi:10.1111/j.1471-4159.2005.03558.x

    Article  PubMed  Google Scholar 

  9. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588

    Article  CAS  PubMed  Google Scholar 

  10. Ferre S, Quiroz C, Woods AS et al (2008) An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Clark JD, Gebhart GF, Gonder JC et al (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  PubMed  Google Scholar 

  12. Villar-Menéndez I, Nuñez F, Díaz-Sánchez S et al (2014) Striatal adenosine A2A receptor expression is controlled by S-adenosyl-L-methionine-mediated methylation. Purinergic Signal 10:523–528. doi:10.1007/s11302-014-9417-4

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad/Instituto de Salud Carlos III (SAF2014-55700-P, PCIN-2013-019-C03-03, and PIE14/00034), Institució Catalana de Recerca i Estudis Avançats (ICREA Academia-2010), and Agentschap voor Innovatie door Wetenschap en Technologie (SBO-140028) to FC. Also, F.C., J.T., and V.F.-D. belong to the “Neuropharmacology and Pain” accredited research group (Generalitat de Catalunya, 2014 SGR 1251). We thank E. Castaño and B. Torrejón from the Scientific and Technical Services (SCT) group at the Bellvitge Campus of the University of Barcelona for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ciruela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Taura, J., Fernández-Dueñas, V., Ciruela, F. (2016). Determination of GPCR-Mediated cAMP Accumulation in Rat Striatal Synaptosomes. In: Luján, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3064-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3064-7_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3063-0

  • Online ISBN: 978-1-4939-3064-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics