Skip to main content

Chromatin Immunoprecipitation (ChIP) Assay in Candida albicans

  • Protocol
Candida Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1356))

Abstract

Chromatin immunoprecipitation (ChIP) is a widely used technique which can determine the in vivo association of a specific protein on a particular DNA locus in the genome. In this method cross-linked chromatin is sheared and immunoprecipitated with antibodies raised against a target protein of interest. The end result of this process is the enrichment of DNA fragments associated with the desired protein. Thus, interactions between proteins and genomic loci in cellular context can be determined by this technique. Here, we are describing a ChIP protocol that is optimized for Candida albicans. The protocol requires 4–5 days for completion of the assay and has been used to produce robust ChIP results for diverse proteins in this organism and its related species including Candida dubliniensis and Candida tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81(14):4275–4279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5(8):2009–2018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 6(11):3984–3989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392(6678):831–835

    Article  CAS  PubMed  Google Scholar 

  5. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31(1):76–82

    Article  PubMed  Google Scholar 

  6. Hecht A, Strahl-Bolsinger S, Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383(6595):92–96

    Article  CAS  PubMed  Google Scholar 

  7. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309

    Article  CAS  PubMed  Google Scholar 

  9. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  10. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657

    Article  CAS  PubMed  Google Scholar 

  11. Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci U S A 101(31):11374–11379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J (2006) Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci U S A 103(40):14877–14882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Roy B, Burrack LS, Lone MA, Berman J, Sanyal K (2011) CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans. Mol Microbiol 80(1):14–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Thakur J, Sanyal K (2012) A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans. PLoS Genet 8(4), e1002661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Thakur J, Sanyal K (2013) Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 23(4):638–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459(7247):657–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mavor AL, Thewes S, Hube B (2005) Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6(8):863–874

    Article  CAS  PubMed  Google Scholar 

  18. Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3(4):698–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Padmanabhan S, Thakur J, Siddharthan R, Sanyal K (2008) Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci U S A 105(50):19797–19802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Leuker CE, Sonneborn A, Delbruck S, Ernst JF (1997) Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192(2):235–240

    Article  CAS  PubMed  Google Scholar 

  21. Perez JC, Kumamoto CA, Johnson AD (2013) Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol 11(3), e1001510

    Article  PubMed Central  PubMed  Google Scholar 

  22. Harlow E, Lane D (2006) Immunoprecipitation: preclearing the lysate. CSH Protoc2006(4)

    Google Scholar 

Download references

Acknowledgements

The ChIP method for Candida albicans was first developed by KS in John Carbon’s laboratory and further modified. The work was supported by a grant from the Department of Biotechnology, Government of India, to KS. The intramural support from JNCASR is also acknowledged. SM, LSR, and GC were supported by senior research fellowships from Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustuv Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mitra, S., Rai, L.S., Chatterjee, G., Sanyal, K. (2016). Chromatin Immunoprecipitation (ChIP) Assay in Candida albicans . In: Calderone, R., Cihlar, R. (eds) Candida Species. Methods in Molecular Biology, vol 1356. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3052-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3052-4_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3051-7

  • Online ISBN: 978-1-4939-3052-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics