Skip to main content

Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10–11, EDTA, or phosphate-containing buffers.

Here we describe a protocol for IMAC using Fe3+ for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaga G, Hopp J, Nelson P (1999) Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate–agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol Appl Biochem 29:19–24

    CAS  PubMed  Google Scholar 

  2. Hochuli E, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184

    Article  CAS  PubMed  Google Scholar 

  3. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    Article  CAS  PubMed  Google Scholar 

  4. Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6:2436–2445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Figeys D, Gygi SP, McKinnon G, Aebersold R (1998) An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem 70:3728–3734

    Article  CAS  PubMed  Google Scholar 

  6. Li S, Dass C (1999) Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem 270:9–14

    Article  CAS  PubMed  Google Scholar 

  7. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  8. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130–12135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  10. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  CAS  PubMed  Google Scholar 

  11. Stewart II, Thomson T, Figeys D (2001) O-18 Labeling: a tool for proteomics. Rapid Commun Mass Spectrom 15:2456–2465

    Article  CAS  PubMed  Google Scholar 

  12. Krijgsveld J, Gauci S, Dormeyer W, Heck A (2006) In-gel isoelectric focusing of peptides as a tool for improved protein identification. J Proteome Res 5:1721–1730

    Article  CAS  PubMed  Google Scholar 

  13. McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7:971–980

    Article  CAS  PubMed  Google Scholar 

  14. Saha A, Saha N, Ji LN, Zhao J, Gregan F, Sajadi SAA, Song B, Sigel H (1996) Stability of metal ion complexes formed with methyl phosphate and hydrogen phosphate. J Biol Inorg Chem 1:231–238

    Article  CAS  Google Scholar 

  15. Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y (2005) Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 77:5144–5154

    Article  CAS  PubMed  Google Scholar 

  16. Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, Wu R, Ye M, Zou H (2009) Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Anal Chim Acta 636:34–41

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008) Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res 7:3957–3967

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H, Mohammed S, Heck AJ (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics 10(M110):006452

    PubMed  Google Scholar 

  19. Jensen SS, Larsen MR (2007) The impact of different experimental procedures on phosphopeptide enrichment techniques. Accepted for Rapid Comm, Mass Spectrom

    Google Scholar 

  20. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  CAS  PubMed  Google Scholar 

  21. Kocher T, Allmaier G, Wilm M (2003) Nanoelectrospray-based detection and sequencing of substoichiometric amounts of phosphopeptides in complex mixtures. J Mass Spectrom 38:131–137

    Article  CAS  PubMed  Google Scholar 

  22. Gobom J, Nordhoff E, Mirgorodskaya E, Ekman R, Roepstorff P (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116

    Article  CAS  PubMed  Google Scholar 

  23. Engholm-Keller K, Birck P, Storling J, Pociot F, Mandrup-Poulsen T, Larsen MR (2012) TiSH–a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteomics 75:5749–5761

    Article  CAS  PubMed  Google Scholar 

  24. Liu S, Zhang C, Campbell JL, Zhang H, Yeung KK, Han VK, Lajoie GA (2005) Formation of phosphopeptide-metal ion complexes in liquid chromatography/electrospray mass spectrometry and their influence on phosphopeptide detection. Rapid Commun Mass Spectrom 19:2747–2756

    Article  CAS  PubMed  Google Scholar 

  25. Thingholm TE, Jensen ON (2009) Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry. Methods Mol Biol 527(47–56):xi

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Natural Science and Medical Research Councils (grant no. 10-082195 (T.E.T.)) and the Lundbeck Foundation (M.R.L.—Junior Group Leader Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thingholm, T.E., Larsen, M.R. (2016). Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics