Skip to main content

Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1351))

Abstract

Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cline SD (2012) Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim Biophys Acta 1819:979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Copeland WC, Longley MJ (2014) Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 19:190–198

    Article  CAS  Google Scholar 

  4. Kanuri M, Minko IG, Nechev LV, Harris TM, Harris CM, Lloyd RS (2002) Error prone translesion synthesis past gamma-hydroxypropano deoxyguanosine, the primary acrolein-derived adduct in mammalian cells. J Biol Chem 277:18257–18265

    Article  CAS  PubMed  Google Scholar 

  5. Minko IG, Washington MT, Kanuri M, Prakash L, Prakash S, Lloyd RS (2003) Translesion synthesis past acrolein-derived DNA adduct, gamma-hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. J Biol Chem 278:784–790

    Article  CAS  PubMed  Google Scholar 

  6. Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L (2004) Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 24:5687–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Washington MT, Minko IG, Johnson RE, Haracska L, Harris TM, Lloyd RS, Prakash S, Prakash L (2004) Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta. Mol Cell Biol 24:6900–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L (2005) Human DNA polymerase iota promotes replication through a ring-closed minor-groove adduct that adopts a syn conformation in DNA. Mol Cell Biol 25:8748–8754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCulloch SD, Kokoska RJ, Garg P, Burgers PM, Kunkel TA (2009) The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucleic Acids Res 37:2830–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428:97–100

    Article  CAS  PubMed  Google Scholar 

  11. Takata K, Arana ME, Seki M, Kunkel TA, Wood RD (2010) Evolutionary conservation of residues in vertebrate DNA polymerase N conferring low fidelity and bypass activity. Nucleic Acids Res 38:3233–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stone JE, Kumar D, Binz SK, Inase A, Iwai S, Chabes A, Burgers PM, Kunkel TA (2011) Lesion bypass by S. cerevisiae Pol zeta alone. DNA Repair (Amst) 10:826–834

    Article  CAS  PubMed Central  Google Scholar 

  13. Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 106:383–405

    Article  CAS  PubMed  Google Scholar 

  14. Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139:312–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW (2010) Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem 285:1490–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Graziewicz MA, Bienstock RJ, Copeland WC (2007) The DNA polymerase gamma Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine. Hum Mol Genet 16:2729–2739

    Google Scholar 

  17. Graziewicz MA, Sayer JM, Jerina DM, Copeland WC (2004) Nucleotide incorporation by human DNA polymerase gamma opposite benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyguanosine and deoxyadenosine. Nucleic Acids Res 32:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasiviswanathan R, Gustafson MA, Copeland WC, Meyer JN (2012) Human mitochondrial DNA polymerase gamma exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers. J Biol Chem 287:9222–9229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasiviswanathan R, Minko IG, Lloyd RS, Copeland WC (2013) Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase gamma. J Biol Chem 288:14247–14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasiviswanathan R, Longley MJ, Young MJ, Copeland WC (2010) Purification and functional characterization of human mitochondrial DNA polymerase gamma harboring disease mutations. Methods 51:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lim SE, Ponamarev MV, Longley MJ, Copeland WC (2003) Structural determinants in human DNA polymerase gamma account for mitochondrial toxicity from nucleoside analogs. J Mol Biol 329:45–57

    Article  CAS  PubMed  Google Scholar 

  22. Longley MJ, Ropp PA, Lim SE, Copeland WC (1998) Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry 37:10529–10539

    Article  CAS  PubMed  Google Scholar 

  23. Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274:38197–38203

    Article  CAS  PubMed  Google Scholar 

  24. Boosalis MS, Petruska J, Goodman MF (1987) DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J Biol Chem 262:14689–14696

    CAS  PubMed  Google Scholar 

  25. Mendelman LV, Petruska J, Goodman MF (1990) Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem 265:2338–2346

    CAS  PubMed  Google Scholar 

  26. Chan SSL, Longley MJ, Copeland WC (2005) The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem 280:31341–31346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH, NIEHS intramural research funds (ES 065078 and ES 065080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Copeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Copeland, W.C., Kasiviswanathan, R., Longley, M.J. (2016). Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ. In: McKenzie, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 1351. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3040-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3040-1_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3039-5

  • Online ISBN: 978-1-4939-3040-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics