Skip to main content

Xanthomonas and the TAL Effectors: Nature’s Molecular Biologist

  • Protocol
TALENs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1338))

Abstract

Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature’s genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature’s molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A 103:10503–10508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bonas U, Stall RE, Staskawicz BJ (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

  3. Swarup S, Yang Y, Kingsley MT, Gabriel DW (1992) A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microbe Interact 5:204–213

    Article  CAS  PubMed  Google Scholar 

  4. Hopkins CM, White FF, Choi S et al (1992) Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 5:451–459

    Article  CAS  PubMed  Google Scholar 

  5. De Feyter R, Yang Y, Gabriel DW (1993) Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant Microbe Interact 6:225–237

    Article  PubMed  Google Scholar 

  6. Yang B, White FF (2004) Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 17:1192–1200

    Article  CAS  PubMed  Google Scholar 

  7. Yang B, Zhu W, Johnson LB, White FF (2000) The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent, nuclear-localized, double-stranded DNA binding protein. Proc Natl Acad Sci U S A 97:9807–9812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bai J, Choi SH, Ponciano G et al (2000) Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact 13:1322–1329

    Article  CAS  PubMed  Google Scholar 

  9. Canteros B, Minsavage G, Bonas U et al (1991) A gene from Xanthomonas campestris pv. vesicatoria that determines avirulence in tomato is related to avrBs3. Mol Plant Microbe Interact 4:628–632

    Article  CAS  PubMed  Google Scholar 

  10. Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant Microbe Interact 18:838–848

    Article  CAS  PubMed  Google Scholar 

  11. Schornack S, Minsavage GV, Stall RE et al (2008) Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol 179:546–556

    Article  CAS  PubMed  Google Scholar 

  12. Salanoubat M, Genin S, Artiguenave F et al (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    Article  CAS  PubMed  Google Scholar 

  13. Juillerat A, Bertonati C, Dubois G et al (2014) BurrH: a new modular DNA binding protein for genome engineering. Sci Rep 4:3831

    Article  PubMed  Google Scholar 

  14. Herbers K, Conrads-Strauch J, Bonas U (1992) Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:172–174

    Article  CAS  Google Scholar 

  15. Yang Y, Yuan Q, Gabriel DW (1996) Water-soaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol Plant Microbe Interact 9:105–113

    Article  CAS  Google Scholar 

  16. Yang Y, Gabriel DW (1995) Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. J Bacteriol 177:4963–4968

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Yang Y, De Feyter R, Gabriel DW (1994) Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol Plant Microbe Interact 7:345–355

    Article  CAS  Google Scholar 

  18. Yang B, Sugio A, White FF (2005) Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 18:142–149

    Article  CAS  PubMed  Google Scholar 

  19. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662

    Article  PubMed  Google Scholar 

  20. Van den Ackerveken G, Marois E, Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87:1307–1316

    Article  PubMed  Google Scholar 

  21. Yang Y, Gabriel DW (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant Microbe Interact 8:627–631

    Article  CAS  PubMed  Google Scholar 

  22. Gabriel DW, Yuan Q, Yang Y, Chakrabarty PK (1996) Role of nuclear localizing signal sequences in three disease phenotypes determined by the Xanthomonas avr/pth gene family. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions, vol 8. International Society for Molecular Plant-Microbe Interactions, St Paul, pp 197–202

    Google Scholar 

  23. Zhu W, Yang B, Chittoor JM et al (1998) AvrXA10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact 11:824–832

    Article  CAS  PubMed  Google Scholar 

  24. Gu K, Yang B, Tian D et al (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125

    Article  CAS  PubMed  Google Scholar 

  25. Zhu W, Yang B, Wills N et al (1999) The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. Plant Cell 11:1665–1674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Szurek B, Marois E, Bonas U, Van Den AG (2001) Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 26:523–534

    Article  CAS  PubMed  Google Scholar 

  27. Marois E, van den Ackerveken G, Bonas U (2002) The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol Plant Microbe Interact 15:637–646

    Article  CAS  PubMed  Google Scholar 

  28. Sugio A, Yang B, Zhu T, White FF (2007) Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci U S A 104:10720–10725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chu Z, Yuan M, Yao J et al (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20:1250–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kay S, Hahn S, Marois E et al (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    Article  CAS  PubMed  Google Scholar 

  31. Romer P, Hahn S, Jordan T et al (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  Google Scholar 

  32. Chen L, Hou B, Lalonde S et al (2010) A novel class of sugar transporters essential for intercellular transport and nutrition of pathogens. Nature 468:527–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Cernadas RA, Doyle EL, Nino-Liu DO et al (2014) Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 10:e1003972

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hu Y, Zhang J, Jia H, Sosso D et al (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci U S A 111:E521–E529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Al-Saadi A, Reddy JD, Duan YP et al (2007) All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Mol Plant Microbe Interact 20:934–943

    Article  CAS  PubMed  Google Scholar 

  36. Tian D, Wang J, Zeng X et al (2014) The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26:497–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Strauss T, van Poecke RM, Strauss A et al (2012) RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proc Natl Acad Sci U S A 109:19480–19485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  39. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501

    Article  CAS  PubMed  Google Scholar 

  40. Antony G, Zhou J, Huang S et al (2010) xa13 recessive resistance to bacterial blight is defeated by the induction of disease susceptibility gene Os11N3. Plant Cell 22:3864–3874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Romer P, Recht S, Strauss T et al (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057

    Article  PubMed  Google Scholar 

  42. Yu Y, Streubel J, Balzergue S et al (2011) Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol Plant Microbe Interact 24:1102–1113

    Article  CAS  PubMed  Google Scholar 

  43. Streubel J, Pesce C, Hutin M et al (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200:808–819

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

White, F. (2016). Xanthomonas and the TAL Effectors: Nature’s Molecular Biologist. In: Kühn, R., Wurst, W., Wefers, B. (eds) TALENs. Methods in Molecular Biology, vol 1338. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2932-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2932-0_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2931-3

  • Online ISBN: 978-1-4939-2932-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics