Skip to main content

Tissue Remodeling and Repair During Type 2 Inflammation

  • Chapter
The Th2 Type Immune Response in Health and Disease

Abstract

Tissue remodeling and repair following injury is an active immunologic and tissue regenerative process predicated upon a T helper type 2 (Th2) cell response. While typically associated with immunity to helminths or allergic inflammation, the Th2 response mediates tissue repair, acting to regulate inflammation while promoting the expression of wound healing genes and growth factors involved in tissue regeneration. However, if not appropriately regulated, Th2 responses can drive fibrosis, a pathologic condition where excess extracellular matrix and scar tissue are formed to fill the wound instead of newly regenerated tissue. In this chapter, we review how the Th2 immune responses are generated following injury, and the mechanism by which Th2 cytokines orchestrate wound healing. We focus on the immune cells (e.g., Th2 cells and alternatively activated macrophages) that direct this complex process, and the cytokines (e.g., IL-4 and IL-13) and growth factors (e.g., TGF-β) they secrete to mediate wound healing. Second, we detail the downstream wound healing pathways triggered by these factors notably tissue remodeling, extracellular matrix deposition and tissue regeneration. Finally, we discuss the clinical implications of the Th2 immune response on wound healing and fibrosis, and what key factors can be targeted to regulate the balance between optimal wound healing and detrimental fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAM:

Alternatively activated macrophage

CAM:

Classically activated macrophage

DTR:

Diphtheria toxin receptor

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FAP:

Fibro/adipogenic progenitor

FGF:

Fibroblast growth factor

IGF:

Insulin-like growth factor-1

ILC:

Innate lymphoid cell

LAP:

Latency associated protein

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

RELM:

Resistin-like molecule

PDGF:

Platelet-derived growth factor

TGF-β:

Transforming growth factor β

TIMP:

Tissue inhibitor of metalloproteinase

Th:

T helper

TREM2:

Triggering receptor expressed on myeloid cell 2

TSLP:

Thymic stromal lymphopoietin

VEGF:

Vascular endothelial growth factor

References

  1. Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010;3(7):643–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Allen JE, Wynn TA. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 2011;7(5):e1002003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tredget EE, et al. Polarized Th2 cytokine production in patients with hypertrophic scar following thermal injury. J Interferon Cytokine Res. 2006;26(3):179–89.

    Article  CAS  PubMed  Google Scholar 

  5. Guo Z, et al. Burn injury promotes antigen-driven Th2-type responses in vivo. J Immunol. 2003;171(8):3983–90.

    Article  CAS  PubMed  Google Scholar 

  6. Chen F, et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med. 2012;18(2):260–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wilson MS, et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sonnenberg GF, et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med. 2010;207(6):1293–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Huaux F, et al. Dual roles of IL-4 in lung injury and fibrosis. J Immunol. 2003;170(4):2083–92.

    Article  CAS  PubMed  Google Scholar 

  10. Marsland BJ, et al. Nippostrongylus brasiliensis infection leads to the development of emphysema associated with the induction of alternatively activated macrophages. Eur J Immunol. 2008;38(2):479–88.

    Article  CAS  PubMed  Google Scholar 

  11. Reece JJ, et al. Hookworm-induced persistent changes to the immunological environment of the lung. Infect Immun. 2008;76(8):3511–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol. 2010;11(4):289–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Taylor BC, et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med. 2009;206(3):655–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Siracusa MC, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011;477(7363):229–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Perrigoue JG, et al. MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol. 2009;10(7):697–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Owyang AM, et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med. 2006;203(4):843–9.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Saenz SA, et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464(7293):1362–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chiaramonte MG, et al. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology. 2001;34(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  19. Fichtner-Feigl S, et al. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  20. Oriente A, et al. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther. 2000;292(3):988–94.

    CAS  PubMed  Google Scholar 

  21. Bailey JR, et al. IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One. 2012;7(12):e52332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tait Wojno ED, Artis D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe. 2012;12(4):445–57.

    Article  CAS  PubMed  Google Scholar 

  23. Monticelli LA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Perugorria MJ, et al. The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology. 2008;48(4):1251–61.

    Article  CAS  PubMed  Google Scholar 

  25. Trautmann A, et al. Mast cell involvement in normal human skin wound healing: expression of monocyte chemoattractant protein-1 is correlated with recruitment of mast cells which synthesize interleukin-4 in vivo. J Pathol. 2000;190(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  26. Gailit J, et al. The differentiation and function of myofibroblasts is regulated by mast cell mediators. J Invest Dermatol. 2001;117(5):1113–9.

    Article  CAS  PubMed  Google Scholar 

  27. Margulis A, et al. MMP dependence of fibroblast contraction and collagen production induced by human mast cell activation in a three-dimensional collagen lattice. Am J Physiol Lung Cell Mol Physiol. 2009;296(2):L236–47.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  CAS  PubMed  Google Scholar 

  29. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  CAS  PubMed  Google Scholar 

  30. Lucas T, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184(7):3964–77.

    Article  CAS  PubMed  Google Scholar 

  31. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175(6):2454–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Herbert DR, et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity. 2004;20(5):623–35.

    Article  CAS  PubMed  Google Scholar 

  33. Jenkins SJ, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332(6035):1284–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Siracusa MC, et al. Dynamics of lung macrophage activation in response to helminth infection. J Leukoc Biol. 2008;84(6):1422–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Loke P, et al. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 2002;3:7.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Loke P, et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol. 2007;179(6):3926–36.

    Article  CAS  PubMed  Google Scholar 

  37. Sandler NG, et al. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol. 2003;171(7):3655–67.

    Article  CAS  PubMed  Google Scholar 

  38. Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013;31:317–43.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol. 2010;45(2):106–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Campbell L, et al. Local Arginase 1 activity is required for cutaneous wound healing. J Invest Dermatol. 2013;133(10):2461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pesce JT, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4):e1000371.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zimmermann N, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003;111(12):1863–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Munitz A, et al. Resistin-like molecule-alpha regulates IL-13-induced chemokine production but not allergen-induced airway responses. Am J Respir Cell Mol Biol. 2012;46(5):703–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Holcomb IN, et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 2000;19(15):4046–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu T, et al. FIZZ1 stimulation of myofibroblast differentiation. Am J Pathol. 2004;164(4):1315–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yamaji-Kegan K, et al. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL-4-dependent mechanism. J Immunol. 2010;185(9):5539–48.

    Article  CAS  PubMed  Google Scholar 

  47. Nair MG, et al. Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type 2 inflammation in the lung. J Exp Med. 2009;206(4):937–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pesce JT, et al. Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 2009;5(4):e1000393.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Angelini DJ, et al. Resistin-like molecule-beta in scleroderma-associated pulmonary hypertension. Am J Respir Cell Mol Biol. 2009;41(5):553–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Liu T, et al. FIZZ2/RELM-beta induction and role in pulmonary fibrosis. J Immunol. 2011;187(1):450–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Cai Y, et al. Ym1/2 promotes Th2 cytokine expression by inhibiting 12/15(S)-lipoxygenase: identification of a novel pathway for regulating allergic inflammation. J Immunol. 2009;182(9):5393–9.

    Article  CAS  PubMed  Google Scholar 

  52. Reese TA, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447(7140):92–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lee CG, et al. Chitinase-like proteins in lung injury, repair, and metastasis. Proc Am Thorac Soc. 2012;9(2):57–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    CAS  PubMed  Google Scholar 

  55. Willenborg S, et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood. 2012;120(3):613–25.

    Article  CAS  PubMed  Google Scholar 

  56. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.

    Article  CAS  PubMed  Google Scholar 

  57. Takahashi K, et al. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4(4):e124.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Seno H, et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci. 2009;106(1):256–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Huber S, et al. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood. 2010;116(17):3311–20.

    Article  CAS  PubMed  Google Scholar 

  60. Heredia JE, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. 2013;153(2):376–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Fukushi J-I, et al. The activity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J Immunol. 2000;165(5):2818–23.

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  63. Lakos G, et al. Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol. 2004;165(1):203–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Brett D. A review of collagen and collagen-based wound dressings. Wounds. 2008;20(12):347–56.

    PubMed  Google Scholar 

  65. Prockop DJ, Kivirikko KI. Heritable diseases of collagen. N Engl J Med. 1984;311(6):376–86.

    Article  CAS  PubMed  Google Scholar 

  66. Volk SW, et al. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs. 2011;194(1):25–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    Article  CAS  PubMed  Google Scholar 

  68. Cook H, et al. Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J Invest Dermatol. 2000;115(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  69. van der Veer WM, et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns. 2009;35(1):15–29.

    Article  PubMed  Google Scholar 

  70. Douglass A, et al. Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury. J Hepatol. 2008;49(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  71. Lordan JL, et al. Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol. 2002;169(1):407–14.

    Article  CAS  PubMed  Google Scholar 

  72. Madden KB, et al. Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. J Immunol. 2002;169(8):4417–22.

    Article  CAS  PubMed  Google Scholar 

  73. Jackson WM, Nesti LJ, Tuan RS. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med. 2012;1(1):44–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Kluth DC, et al. Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol. 2001;166(7):4728–36.

    Article  CAS  PubMed  Google Scholar 

  75. Hunter MM, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology. 2010;138(4):1395–405.

    Article  CAS  PubMed  Google Scholar 

  76. Hinchcliff M, Varga J. Systemic sclerosis/scleroderma: a treatable multisystem disease. Am Fam Physician. 2008;78(8):961–8.

    PubMed  Google Scholar 

  77. Denton CP, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56(1):323–33.

    Article  CAS  PubMed  Google Scholar 

  78. Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5(4):200–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Occleston NL, et al. Therapeutic improvement of scarring: mechanisms of scarless and scar-forming healing and approaches to the discovery of new treatments. Dermatol Res Pract. 2010;2010.

    Google Scholar 

  80. Liu X, et al. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci. 1997;94(5):1852–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Hesse M, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J Immunol. 2001;167(11):6533–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera G. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chan, A.J., Jang, J.C., Nair, M.G. (2016). Tissue Remodeling and Repair During Type 2 Inflammation. In: Gause, W., Artis, D. (eds) The Th2 Type Immune Response in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2911-5_7

Download citation

Publish with us

Policies and ethics