Skip to main content

Centrosome–Microtubule Interactions in Health, Disease, and Disorders

  • Chapter
The Cytoskeleton in Health and Disease

Abstract

The centrosome, known as the cell’s major microtubule organizing center, is a multifunctional organelle of ca. 1 μm in diameter without membrane boundaries; it relies on precise regulation to nucleate microtubules for specific functions throughout the cell cycle. The centrosome also serves as hub for signal transduction molecules and orchestrates signal transduction through its microtubule network. It holds key roles in cell cycle regulation and directly or indirectly affects cell cycle progression and cellular metabolism.

Centrosome dysfunctions have been implicated in numerous diseases and disorders including neurodegenerative diseases and cancer. Centrosome functions are also affected in aging cells in which aneuploidy is associated with loss of centrosome and microtubule integrity leading to chromosome mis-segregation, as seen in senescing somatic cells and in mammalian reproductive cells in which meiotic spindles become dysfunctional resulting in fertility problems and developmental disorders.

This chapter is centered on centrosome–microtubule interactions and their dysfunctions in disease and disorders with focus on (1) Centrosome–microtubule dynamics; (2) Centrosome dysfunctions in aging cells; (3) Centrosome dysfunctions in cancer cells. Several avenues are discussed to understand centrosome abnormalities and restore function in affected reproductive and somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Badano JL, Teslovich TM, Katsanis N (2005) The centrosome in human genetic disease. Nat Rev Genet 6:194–205

    CAS  PubMed  Google Scholar 

  3. Nigg EZ, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678

    CAS  PubMed  Google Scholar 

  4. Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137:32–45

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA (2011) Centrosomes and cilia in human disease. Trends Genet 27(8):307–315

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Schatten H (2013) The impact of centrosome abnormalities on breast cancer development and progression with a focus on targeting centrosomes for breast cancer therapy. In: Schatten H (ed) Cell and molecular biology of breast cancer. Springer Science and Business Media/LLC, New York

    Google Scholar 

  7. Yoder BK et al (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    CAS  PubMed  Google Scholar 

  8. Schatten H, Sun Q-Y (2010) The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol 21:174–184

    PubMed  Google Scholar 

  9. Fisk HA (2012) Many pathways to destruction: the centrosome and its control by and role in regulated proteolysis (Chapter 8). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  10. Prosser SL, Fry AM (2012) Regulation of the centrosome cycle by protein degradation (Chapter 9). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  11. Fukasawa K (2012) Molecular links between centrosome duplication and other cell cycle associated events (Chapter 10). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  12. Boutros R (2012) Regulation of centrosomes by cyclin-dependent kinases (Chapter 11). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  13. Schatten H, Sun QY (2015) Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev. doi:10.1071/RD14493. [Epub ahead of print] PMID:25903261

  14. Salisbury JL (2004) Centrosomes: Sfi1p and centrin unravel a structural riddle. Curr Biol 14:R27–R29

    CAS  PubMed  Google Scholar 

  15. Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287–1292

    CAS  PubMed  Google Scholar 

  16. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    CAS  PubMed  Google Scholar 

  17. Wilkinson CJ, Andersen JS, Mann M, Nigg EA (2004) A proteomic approach to the inventory of the human centrosome. In: Nigg E (ed) Centrosomes in development and disease. Wiley-VCA, Weinheim, pp 125–142

    Google Scholar 

  18. Hannak E, Oegema K, Kirkham M, Gonczy P, Habermann B, Hyman AA (2002) The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J Cell Biol 157:591–602

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Murphy S, Urbani L, Stearns T (1998) The mammalian gamma-tubulin complex contains homologues of yeast spindle pole body component sspc97p and spc98p. J Cell Biol 141:663–674

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Dictenberg J, Zimmerman W, Sparks C, Young A, Vidair C, Zheng Y, Carrington W, Fay F, Doxsey SJ (1998) Pericentrin and gamma tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141:163–174

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Doxsey SJ, Stein P, Evans L, Calarco P, Kirschner M (1994) Pericentrin, a highly conserved protein of centrosomes involved in microtubule organization. Cell 76:639–650

    CAS  PubMed  Google Scholar 

  22. Flory MR, Davis TN (2003) The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Genomics 82:401–405

    CAS  PubMed  Google Scholar 

  23. Kawaguchi S, Zheng Y (2004) Characterization of a Drosophila centrosome protein CP309 that shares homology with Kendrin and CG-NAP. Mol Biol Cell 15:37–45

    PubMed Central  PubMed  Google Scholar 

  24. Keryer G, Di Fiore B, Celati C, Lechtreck KF, Mogensen M, Delouvee A, Lavia P, Bornens M, Tassin AM (2003) Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell 14:4260–4271

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Steadman BT, Schmidt PH, Shanks RA, Lapierre LA, Goldenring JR (2002) Transforming acidic coiled-coil-containing protein 4 interacts with centrosomal AKAP350 and the mitotic spindle apparatus. J Biol Chem 277(33):30165–30176

    CAS  PubMed  Google Scholar 

  26. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 13:3235–3245

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Ohta T, Essner R, Ryu JH, Palazzo RE, Uetake Y, Kuriyama R (2002) Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J Cell Biol 156:87–99

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Quintyne NJ, Gill SR, Eckley DM, Crego CL, Compton DA, Schroer TA (1999) Dynactin is required for microtubule anchoring at fibroblast centrosomes. J Cell Biol 147:321–334

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Schroer TA (2001) Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr Opin Cell Biol 13:92–96

    CAS  PubMed  Google Scholar 

  30. Quintyne NJ, Schroer TA (2002) Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J Cell Biol 159:245–254

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Liu P, Choi Y-K, Qi RZ (2014) NME7 is a functional component of the γ-tubulin ring complex. Mol Biol Cell 25:2017–2025

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Singh P, Thomas GE, Gireesh KK, Manna TK (2014) TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes. J Biol Chem 289(46):31719–31735

    CAS  PubMed  Google Scholar 

  33. Teixidó-Travesa N, Roig J, Lüders J (2012) The where, when and how of microtubule nucleation – one ring to rule them all. J Cell Sci 125:4445–4456

    PubMed  Google Scholar 

  34. Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleation by gamma-tubulin complexes. Nat Rev Mol Cell Biol 12:709–721. doi:10.1038/nrm3209

    CAS  PubMed  Google Scholar 

  35. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14:1159–1168. doi:10.1038/ncb2597

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976. doi:10.1242/ bio.20122337

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158. doi:10.1038/ncb2591

    CAS  PubMed  Google Scholar 

  38. Fu J, Glover DM (2012) Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104. doi:10.1098/rsob.120104

    PubMed Central  PubMed  Google Scholar 

  39. Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ (2000) Cytoplasmic dynein-mediated assembly of pericentrin and γ tubulin onto centrosomes. Mol Biol Cell 11:2047–2056

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1:524–529

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Levy YY, Lai EY, Remillard SP, Heintzelman MB, Fulton C (1996) Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskeleton 33:298–323

    CAS  PubMed  Google Scholar 

  42. Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7:39–45

    CAS  PubMed  Google Scholar 

  43. Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276:20774–20780

    CAS  PubMed  Google Scholar 

  44. Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    CAS  PubMed  Google Scholar 

  45. Merdes A, Cleveland DA (1998) The role of NuMA in the interphase nucleus. J Cell Sci 111:71–79

    CAS  PubMed  Google Scholar 

  46. Sun QY, Schatten H (2006) Multiple roles of NuMA in vertebrate cells: review of an intriguing multi-functional protein. Front Biosci 11:1137–1146

    CAS  PubMed  Google Scholar 

  47. Sun Q-Y, Schatten H (2007) Centrosome inheritance after fertilization and nuclear transfer in mammals. Adv Exp Med Biol 591:58–71

    Google Scholar 

  48. Saredi A, Howard L, Compton DA (1997) Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J Cell Sci 110:1287–1297

    CAS  PubMed  Google Scholar 

  49. Mack GJ, Ou Y, Rattner JB (2000) Integrating centrosome structure with protein composition and function in animal cells. Microsc Res Tech 49:409–419

    CAS  PubMed  Google Scholar 

  50. Ou Y, Rattner JB (2004) The centrosome in higher organisms: structure, composition and duplication. Int Rev Cytol 238:119–182

    CAS  PubMed  Google Scholar 

  51. Sluder G (2004) Centrosome duplication and its regulation in the higher animal cell. In: Nigg E (ed) Centrosomes in development and disease. Wiley-VCA, Weinheim, pp 167–189

    Google Scholar 

  52. Matsumoto Y, Maller JL (2002) Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts (comment). Science 295:499–502

    CAS  PubMed  Google Scholar 

  53. Ohta Y, Ohba T, Miyamoto E (1990) Ca2+/calmodulin-dependent protein kinase II: localization in the interphase nucleus and the mitotic apparatus of mammalian cells. Proc Natl Acad Sci U S A 87:5341–5345

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Pietromonaco SF, Seluja GA, Elias L (1995) Identification of enzymatically active Ca2+/calmodulin-dependent protein kinase in centrosomes of hematopoietic cells. Blood Cells Mol Dis 21:34–41

    CAS  PubMed  Google Scholar 

  55. Fenton B, Glover DM (1993) A conserved mitotic kinase active at late anaphase-telophase in syncytial Drosophila embryos. Nature 363:637–640

    CAS  PubMed  Google Scholar 

  56. Donaldson MM, Tavares AAM, Hagan IM, Nigg EA, Glover DM (2001) The mitotic roles of polo-like kinase. J Cell Sci 114:2357–2358

    CAS  PubMed  Google Scholar 

  57. Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F, Darzynkiewicz Z, Jhanwar-Uniyal M, Dai W (2002) Cell cycle arrest and apoptosis by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 22(10):3450–3459

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Kais Z, Parvin JD (2012) Centrosome regulation and breast cancer (Chapter 14). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  59. Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81:261–268

    CAS  PubMed  Google Scholar 

  60. Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13:2242–2257

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Gstaiger M, Marti A, Krek W (1999) Association of human SCF(SKP2) subunit p19(SKP1) with interphase centrosomes and mitotic spindle poles. Exp Cell Res 247:554–562

    CAS  PubMed  Google Scholar 

  62. Meraldi P, Nigg EA (2001) Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 114:3749–3757

    CAS  PubMed  Google Scholar 

  63. Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194

    CAS  PubMed  Google Scholar 

  64. Fry AM, Hames RS (2004) The role of the centrosome in cell cycle progression. In: Nigg E (ed) Centrosomes in development and disease. Wiley-VCA, Weinheim, pp 143–166

    Google Scholar 

  65. Jackman M, Lindon C, Nigg E, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143–148

    CAS  PubMed  Google Scholar 

  66. Golsteyn RM, Mundt KE, Fry AM, Nigg EA (1995) Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 129:1617–1628

    CAS  PubMed  Google Scholar 

  67. Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458

    CAS  PubMed  Google Scholar 

  68. Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5:113–125. doi:10.1016/S1534-5807(03)00193-X

    CAS  PubMed  Google Scholar 

  70. Barr AR, Gergely F (2007) Aurora A: the maker and breaker of spindle poles. J Cell Sci 120:2987–2996

    CAS  PubMed  Google Scholar 

  71. Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM (2000) Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11:1555–1569

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Huang J, Raff JW (1999) The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J 18:2184–2195

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Wakefield J, Huang J-Y, Raff JW (2000) Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Curr Biol 10:1367–1370

    CAS  PubMed  Google Scholar 

  74. Wei Y, Multi S, Yang CR, Ma J, Zhang QH, Wang ZB, Li M, Wei L, Ge ZJ, Zhang CH, Ouyang YC, Hou Y, Schatten H, Sun QY (2011) Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS One 6(6):e21557

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Krämer A, Anderhub S, Maier B (2012) Mechanisms and consequences of centrosome clustering in cancer cells (Chapter 17). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  76. Schnackenberg BJ, Palazzo RE (1999) Identification and function of the centrosome centromatrix. Biol Cell 91(6):429–438

    CAS  PubMed  Google Scholar 

  77. Schnackenberg BJ, Hull DR, Balczon RD, Palazzo RE (2000) Reconstitution of microtubule nucleation potential in centrosomes isolated from Spisula solidissima oocytes. J Cell Sci 113(Pt 6):943–953

    CAS  PubMed  Google Scholar 

  78. Schatten H, Walter M, Mazia D, Biessmann H, Paweletz N, Coffe G, Schatten G (1987) Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc Natl Acad Sci U S A 84:8488–8492

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Sun Q-Y, Lai L, Wu G, Bonk A, Cabot R, Park K-W, Day B, Prather RS, Schatten H (2002) Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression are regulated by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol Reprod 66(3):580–588

    CAS  PubMed  Google Scholar 

  81. Ou X-H, Li S, Xu B-C, Wang Z-B, Quan S, Li M, Zhang Q-H, Ouyang Y-C, Schatten H, Xing F-Q, Sun Q-Y (2010) p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 9(20):4130–4143

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Schatten H, Sun Q-Y (2014) Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. In: Sutovsky P (ed) Posttranslational protein modifications in the reproductive system. Springer Science and Business Media, New York

    Google Scholar 

  83. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786

    CAS  PubMed  Google Scholar 

  84. Rymut SM, Kelley TJ (2015) Broader implications: biological and clinical significance of microtubule acetylation. Cell Health Cytoskelet 7:71–82

    Google Scholar 

  85. Schatten G, Simerl y C, Asai DJ, Szöke E, Cooke P, Schatten H (1988) Acetylated α-tubulin in microtubules during mouse fertilization and early development. Dev Biol 130:74–86

    Google Scholar 

  86. Asthana J, Kapoor S, Mohan R, Panda D (2013) Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J Biol Chem 288(31):22516–22526

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J (2010) MEC-17 is an alpha-tubulin acetyltransferase. Nature 467:218–222. doi:10.1038/nature09324

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21:6820–6831, PubMed: 12486003

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    CAS  PubMed  Google Scholar 

  90. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444, PubMed: 12620231

    CAS  PubMed  Google Scholar 

  91. Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 122:3531–3541

    CAS  PubMed  Google Scholar 

  92. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100:4389–4394

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuro-protective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132:10842–10846

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160, PubMed: 17786050

    CAS  PubMed  Google Scholar 

  95. Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129:1255–1257

    CAS  PubMed  Google Scholar 

  96. Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81

    CAS  PubMed  Google Scholar 

  97. D’Angelo A, Franco B (2009) The dynamic cilium in human diseases. Pathogenetics 2(1):3

    PubMed Central  PubMed  Google Scholar 

  98. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:39–53

    Google Scholar 

  99. Quarmby LM, Parker JDK (2005) Cilia and the cell cycle? J Cell Biol 169(5):707–710

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6:928–940

    CAS  PubMed  Google Scholar 

  101. Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169

    CAS  PubMed  Google Scholar 

  102. Michaud EJ, Yoder BK (2006) The primary cilium in cell signaling and cancer. Cancer Res 66:6463–6467

    CAS  PubMed  Google Scholar 

  103. Satir P, Christensen ST (2008) Structure and function of mammalian cilia. Histochem Cell Biol 129:687–693

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Cheng J, Türkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599–604

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Oh J, Lee YD, Amy J, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Schatten H, Chakrabarti A, Hedrick J (1999) Centrosome and microtubule instability in cells during aging. J Cell Biochem 74:229–241

    CAS  PubMed  Google Scholar 

  107. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287:2486–2492

    CAS  PubMed  Google Scholar 

  108. Miao Y-L, Kikuchi K, Sun Q-Y, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15(5):573–585

    PubMed  Google Scholar 

  109. Wang Z-B, Schatten H, Sun Q-Y (2011) Why is chromosome segregation error in oocytes increased with maternal aging? Physiology 26(5):314–325

    CAS  PubMed  Google Scholar 

  110. Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY (2014) The root of reduced fertility in aged women and possible therapeutic options: current status and future perspectives. Mol Aspects Med 38:54–85

    PubMed  Google Scholar 

  111. Schatten H, Rawe VY, Sun Q-Y (2012) Cytoskeletal architecture of human oocytes with focus on centrosomes and their significant role in fertilization. In: Nagy ZP, Varghese AC, Agarwal A (eds) Practical manual of in vitro fertilization: advanced methods and novel devices. Humana Press, New York

    Google Scholar 

  112. Miao Y-L, Sun Q-Y, Zhang X, Zhao J-G, Zhao M-T, Spate L, Prather RS, Schatten H (2009) Centrosome abnormalities during porcine oocyte aging. Environ Mol Mutagen 50(8):666–671

    CAS  PubMed  Google Scholar 

  113. Wang HF, Takenaka K, Nakanishi A et al (2011) BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2. Cancer Res 71:68–77

    CAS  PubMed  Google Scholar 

  114. Kim NH, Moon SJ, Prather RS, Day BN (1996) Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol Reprod Dev 43:513–518

    CAS  PubMed  Google Scholar 

  115. Alvarez Sedó CA, Schatten H, Combelles C, Rawe VY (2011) The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 17(6):392–398. doi:10.1093/molehr/gar009

    PubMed  Google Scholar 

  116. Schatten H, Sun Q-Y (2013) Chromosome behavior and spindle formation in mammalian oocytes. In: Trounson A, Gosden R, Eichenlaub-Ritter U (eds) Biology and pathology of the oocyte. Biology & pathology of the Oocyte, 2nd edn

    Google Scholar 

  117. Gardner MK, Zanic M, Howard J (2013) Microtubule catastrophe and rescue. Curr Opin Cell Biol 25:14–22

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Cande Z (1990) Centrosomes: composition and reproduction. Curr Opin Cell Biol 2:301–305

    CAS  PubMed  Google Scholar 

  119. Huang B (1990) Genetics and biochemistry of centrosomes and spindle poles. Curr Opin Cell Biol 2:28–32

    CAS  PubMed  Google Scholar 

  120. Zhao Y, Fang X, Wang Y, Zhang J, Jiang S, Liu Z, Ma Z, Xu L, Li E, Zhang K (2014) Comprehensive analysis for histone acetylation of human colon cancer cells treated with a novel HDAC inhibitor. Curr Pharm Des 20(11):1866–1873

    CAS  PubMed  Google Scholar 

  121. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    CAS  PubMed  Google Scholar 

  122. Kikuchi K, Naito K, Noguchi J, Shimada A, Kaneko H, Yamashita M, Aoki F, Tojo H, Toyoda Y (2000) Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol Reprod 63:715–722

    CAS  PubMed  Google Scholar 

  123. Kikuchi K, Naito K, Noguchi J, Kaneko H, Tojo H (2002) Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. Cloning Stem Cells 4:211–222

    CAS  PubMed  Google Scholar 

  124. Xu Z, Abbott A, Kopf GS, Schultz RM, Ducibella T (1997) Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol Reprod 57:743–750

    CAS  PubMed  Google Scholar 

  125. Tian XC, Lonergan P, Jeong BS, Evans AC, Yang X (2002) Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocytes. Mol Reprod Dev 62:132–138

    CAS  PubMed  Google Scholar 

  126. Fan HY, Sun QY (2004) Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod 70:535–547

    CAS  PubMed  Google Scholar 

  127. Tatone C, Carbone MC, Gallo R, Delle Monache S, Di Cola M, Alesse E, Amicarelli F (2006) Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2. Biol Reprod 74:395–402

    CAS  PubMed  Google Scholar 

  128. Liang CG, Su YQ, Fan HY, Schatten H, Sun QY (2007) Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol 21(9):2037–2055

    CAS  PubMed  Google Scholar 

  129. Lee JH, Campbell KH (2008) Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer. Cloning Stem Cells 10:381–390

    CAS  PubMed  Google Scholar 

  130. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. G. Fisher, Jena

    Google Scholar 

  131. Schatten H, Wiedemeier A, Taylor M, Lubahn D, Greenberg NM, Besch-Williford C, Rosenfeld C, Day K, Ripple M (2000) Centrosomes-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol Cell 92:331–340

    CAS  PubMed  Google Scholar 

  132. Lingle WL, Salisbury JL (2000) The role of the centrosome in the development of malignant tumors. Curr Top Dev Biol 49:313–329

    CAS  PubMed  Google Scholar 

  133. Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A 99:1978–1983

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri (Translated and annotated by Henry Harris). J Cell Sci 121(Suppl 1):1–84

    PubMed  Google Scholar 

  135. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A 97:10002–10007

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7(8):1122–1144

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A 95:2950–2955

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Liu T, Niu Y, Yu Y, Liu Y, Zhang F (2009) Increased γ-tubulin expression and P16INK4A promoter methylation occur together in preinvasive lesions and carcinomas of the breast. Ann Oncol 20:441–448

    CAS  PubMed  Google Scholar 

  139. Niu Y, Liu T, Tse GM, Sun B, Niu R, Li HM, Wang H, Yang Y, Ye X, Wang Y, Yu Q, Zhang F (2009) Increased expression of centrosomal α, γ-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci 100:580–587

    CAS  PubMed  Google Scholar 

  140. Kammerer S, Roth RB, Hoyal CR, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Cantor CR, Nelson MR, Brown A (2005) Association of the NuMA region on chromosome 11q13 with breast cancer susceptibility. Proc Natl Acad Sci U S A 102(6):2004–2009

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Gehmlich KL, Haren L, Merdes A (2004) Cyclin B degradation leads to NuMA release from dynein/dynactin and from spindle poles. EMBO Rep 5:97–103

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Korzeniewski N, Duensing S (2012) Disruption of centrosome duplication control and induction of mitotic instability by the high-risk human papillomavirus oncoproteins E6 and E7 (Chapter 12). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  144. Saladino C, Bourke E, Morrison CG (2012) Centrosomes, DNA damage and aneuploidy (Chapter 13). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  145. Yan B, Chng W-J (2012) The role of centrosomes in multiple myeloma (Chapter 15). In: Schatten H (ed) The centrosome. Springer Science and Business Media, New York

    Google Scholar 

  146. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    CAS  PubMed  Google Scholar 

  147. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Wojcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589

    CAS  PubMed  Google Scholar 

  149. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    CAS  PubMed  Google Scholar 

  150. Roth J, Yam GH, Fan J, Hirano K, Gaplovska-Kysela K, Le Fourn V, Guhl B, Santimaria R, Torossi T, Ziak M, Zuber C (2008) Protein quality control: the who’s who, the where’s and therapeutic escapes. Histochem Cell Biol 129:163–177

    PubMed Central  CAS  PubMed  Google Scholar 

  151. McNaught KS et al (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81:301–306

    CAS  PubMed  Google Scholar 

  152. Ohki R, Nemoto J, Murasawa H, Oda E, Inazawa J, Tanaka N, Taniguchi T (2000) Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J Biol Chem 275:22627–22630

    CAS  PubMed  Google Scholar 

  153. Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Goggins M (2003) Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 63:4158–4166

    CAS  PubMed  Google Scholar 

  154. Katayama H, Brinkley WR, Sen S (2003) The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22:451–464

    PubMed  Google Scholar 

  155. Goepfert TM, Adigun YE, Zhong L et al (2002) Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62:4115–4122

    CAS  PubMed  Google Scholar 

  156. Wang X, Zhou YX, Qiao W et al (2006) Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25:7148–7158

    CAS  PubMed  Google Scholar 

  157. Pihan GA, Doxsey SJ (1999) The mitotic machinery is a source of genetic instability in cancer. Semin Cancer Biol 9:289–302

    CAS  PubMed  Google Scholar 

  158. D’Assoro AB, Busby R, Suino K et al (2004) Genotoxic stress leads to centrosome amplification in breast cancer cell lines that have an inactive G1/S cell cycle checkpoint. Oncogene 23:4068–4075

    PubMed  Google Scholar 

  159. D'Assoro AB, Busby R, Acu ID et al (2008) Impaired p53 function leads to centrosome amplification, acquired ERalpha phenotypic heterogeneity and distant metastases in breast cancer MCF-7 xenografts. Oncogene 27:3901–3911

    PubMed Central  PubMed  Google Scholar 

  160. Shao S, Liu R, Wang Y et al (2010) Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 120:498–507

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Hayward DG, Clarke RB, Faragher AJ et al (2004) The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 64:7370–7376

    CAS  PubMed  Google Scholar 

  162. Suizu F, Ryo A, Wulf G et al (2006) Pin1 regulates centrosome duplication, and its overexpression induces centrosome amplification, chromosome instability, and oncogenesis. Mol Cell Biol 26:1463–1479

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Bergmann S, Royer-Pokora B, Fietze E et al (2005) YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res 65:4078–4087

    CAS  PubMed  Google Scholar 

  164. Korzeniewski N, Wheeler S, Chatterjee P et al (2010) A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification – implications for chemoprevention. Mol Cancer 9:153

    PubMed Central  PubMed  Google Scholar 

  165. Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA, Cerhan JR, Couch FJ (2011) Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat 125(1):221–228. doi:10.1007/s10549-010-0950-8

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Gergely F, Basto R (2008) Multiple centrosomes: together they stand, divided they fall. Genes Dev 22:2291–2296

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Schatten H, Walter M, Biessmann H, Schatten G (1988) Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis. Cell Motil Cytoskeleton 11(4):248–259

    CAS  PubMed  Google Scholar 

  168. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M (2012) Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol 197(3):391–405

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    CAS  PubMed  Google Scholar 

  171. Schatten G, Schatten H, Bestor T, Balczon R (1982) Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs. J Cell Biol 94:455–465

    CAS  PubMed  Google Scholar 

  172. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A 78:5608–5612

    PubMed Central  PubMed  Google Scholar 

  173. Dimitriadis I, Katsaros C, Galatis B (2001) The effect of taxol on centrosome function and microtubule organization in apical cells of Sphacelaria rigidula (Phaeophyceae). Phycol Res 49:23–34

    CAS  Google Scholar 

  174. Shin SJ, Beech JR, Kelly KA (2012) Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer. Integr Biol 5(1):29–42. doi:10.1039/C2IB20047C

    Google Scholar 

  175. Rebacz B, Larsen TO, Clausen MH, Ronnest MH, Loffler H, Ho AD, Krämer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350

    CAS  PubMed  Google Scholar 

  176. Schatten H, Schatten G, Petzelt C, Mazia D (1982) Effects of griseofulvin on fertilization and early development of sea urchins. Independence of DNA synthesis, chromosome condensation, and cytokinesis cycles from microtubule-mediated events. Eur J Cell Biol 27:74–87

    CAS  PubMed  Google Scholar 

  177. Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401

    CAS  PubMed  Google Scholar 

  178. Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc Natl Acad Sci U S A 102:9878–9883

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Uen YH, Liu DZ, Weng MS, Ho YS, Lin SY (2007) NF-kappaB pathway is involved in griseofulvin-induced G2/M arrest and apoptosis in HL-60 cells. J Cell Biochem 101(5):1165–1175

    CAS  PubMed  Google Scholar 

  180. Marchetti F, Mailhes JB, Bairnsfather L, Nandy I, London SN (1996) Dose-response study and threshold estimation of griseofulvin induced aneuploidy during female mouse meiosis I and II. Mutagenesis 11:195–200

    CAS  PubMed  Google Scholar 

  181. Schatten H (1977) Untersuchungen über die Wirkung von Griseofulvin in Seeigeleiern und in Mammalierzellen. Universität Heidelberg (Effects of griseofulvin on sea urchin eggs and on mammalian cells. University of Heidelberg)

    Google Scholar 

  182. Wehland J, Herzog W, Weber K (1977) Interaction of griseofulvin with microtubules, microtubule protein and tubulin. J Mol Biol 111:329–342

    CAS  PubMed  Google Scholar 

  183. Grisham LM, Wilson L, Bensch KG (1973) Antimitotic action of griseofulvin does not involve disruption of microtubules. Nature 244:294–296

    CAS  PubMed  Google Scholar 

  184. Miao YL, Zhang X, Zhao JG, Spate L, Zhao MT, Murphy CN, Prather RS, Sun QY, Schatten H (2012) Effects of griseofulvin on in vitro porcine oocyte maturation and embryo development. Environ Mol Mutagen 53(7):561–566. doi:10.1002/em.21717

    CAS  PubMed  Google Scholar 

  185. Alvarez Sedó CA, Schatten H, Combelles C, Rawe VY (2011) The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 17(6):392–398

    Google Scholar 

  186. Schatten H, Sun Q-Y (2010) The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Seminars in Cell and Developmental Biology 21:174–184

    Google Scholar 

  187. Schatten H, Rawe VY, Sun Q-Y (2012) Cytoskeletal architecture of human oocytes with focus on centrosomes and their significant role in fertilization. In: Practical Manual of In Vitro Fertilization: Advanced Methods and Novel Devices, edited by Zsolt Peter Nagy, Alex C. Varghese, and Ashok Agarwal. Humana Press (Springer Science+Business Media, New York, USA).

    Google Scholar 

Download references

Acknowledgments

It is a pleasure to gratefully acknowledge Donald Connor’s professional help with the illustrations and support from MU’s Research Council for studies on centrosome dysfunctions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schatten, H., Sun, QY. (2015). Centrosome–Microtubule Interactions in Health, Disease, and Disorders. In: Schatten, H. (eds) The Cytoskeleton in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2904-7_5

Download citation

Publish with us

Policies and ethics