Skip to main content

Glucocorticoids and the Cardiovascular System

  • Chapter
Glucocorticoid Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 872))

Abstract

Glucocorticoids affect the developing and mature cardiovascular system in profound and, at times, contradictory ways. The glucocorticoid receptor is ubiquitous in most cell types and conserved across species, highlighting its importance in development and homeostasis. Despite the fact that the glucocorticoid receptor is widely expressed, tissue-specific effects of glucocorticoids may have pronounced effects on whole organism phenotypes. Here we will review the interactions between glucocorticoids and the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantero F, Boscaro M. Glucocorticoid-dependent hypertension. J Steroid Biochem Mol Biol. 1992;43:409–13.

    Article  CAS  PubMed  Google Scholar 

  2. Baid S, Nieman LK. Glucocorticoid excess and hypertension. Curr Hypertens Rep. 2004;6:493–9.

    Article  PubMed  Google Scholar 

  3. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol (Oxf). 1994;40:479–84.

    Article  CAS  Google Scholar 

  4. Whitworth JA, Mangos GJ, Kelly JJ. Cushing, cortisol, and cardiovascular disease. Hypertension. 2000;36:912–6.

    Article  CAS  PubMed  Google Scholar 

  5. Sabharwal P, Fishel RS, Breslow MJ. Adrenal insufficiency—an unusual cause of shock in postoperative patients. Endocr Pract. 1998;4:387–90.

    Article  CAS  PubMed  Google Scholar 

  6. De Wachter E, Vanbesien J, De Schutter I, Malfroot A, De Schepper J. Rapidly developing Cushing syndrome in a 4-year-old patient during combined treatment with itraconazole and inhaled budesonide. Eur J Pediatr. 2003;162:488–9.

    Article  PubMed  Google Scholar 

  7. Bertagna X, Bertagna C, Laudat MH, Husson JM, Girard F, et al. Pituitary-adrenal response to the antiglucocorticoid action of RU 486 in Cushing’s syndrome. J Clin Endocrinol Metab. 1986;63:639–43.

    Article  CAS  PubMed  Google Scholar 

  8. Nieman LK, Chrousos GP, Kellner C, Spitz IM, Nisula BC, et al. Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU 486. J Clin Endocrinol Metab. 1985;61:536–40.

    Article  CAS  PubMed  Google Scholar 

  9. Sartor O, Cutler Jr GB. Mifepristone: treatment of Cushing’s syndrome. Clin Obstet Gynecol. 1996;39:506–10.

    Article  CAS  PubMed  Google Scholar 

  10. Kalimi M. Role of antiglucocorticoid RU 486 on dexamethasone-induced hypertension in rats. Am J Physiol. 1989;256:E682–5.

    CAS  PubMed  Google Scholar 

  11. Grunfeld JP, Eloy L, Moura AM, Ganeval D, Ramos-Frendo B, et al. Effects of antiglucocorticoids on glucocorticoid hypertension in the rat. Hypertension. 1985;7:292–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mangos GJ, Whitworth JA, Williamson PM, Kelly JJ. Glucocorticoids and the kidney. Nephrology (Carlton). 2003;8:267–73.

    Article  CAS  Google Scholar 

  13. Williamson PM, Kelly JJ, Whitworth JA. Dose-response relationships and mineralocorticoid activity in cortisol-induced hypertension in humans. J Hypertens Suppl. 1996;14:S37–41.

    Article  CAS  PubMed  Google Scholar 

  14. Montrella-Waybill M, Clore JN, Schoolwerth AC, Watlington CO. Evidence that high dose cortisol-induced Na+ retention in man is not mediated by the mineralocorticoid receptor. J Clin Endocrinol Metab. 1991;72:1060–6.

    Article  CAS  PubMed  Google Scholar 

  15. Campen TJ, Vaughn DA, Fanestil DD. Mineralo- and glucocorticoid effects on renal excretion of electrolytes. Pflugers Arch. 1983;399:93–101.

    Article  CAS  PubMed  Google Scholar 

  16. Funder JW, Pearce PT, Myles K, Roy LP. Apparent mineralocorticoid excess, pseudohypoaldosteronism, and urinary electrolyte excretion: toward a redefinition of mineralocorticoid action. FASEB J. 1990;4:3234–8.

    CAS  PubMed  Google Scholar 

  17. Muller OG, Parnova RG, Centeno G, Rossier BC, Firsov D, et al. Mineralocorticoid effects in the kidney: correlation between alphaENaC, GILZ, and Sgk-1 mRNA expression and urinary excretion of Na+ and K+. J Am Soc Nephrol. 2003;14:1107–15.

    Article  CAS  PubMed  Google Scholar 

  18. Stewart PM, Corrie JE, Shackleton CH, Edwards CR. Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. J Clin Invest. 1988;82:340–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Todd-Turla KM, Schnermann J, Fejes-Toth G, Naray-Fejes-Toth A, Smart A, et al. Distribution of mineralocorticoid and glucocorticoid receptor mRNA along the nephron. Am J Physiol. 1993;264:F781–91.

    CAS  PubMed  Google Scholar 

  20. Yan K, Kudo A, Hirano H, Watanabe T, Tasaka T, et al. Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus. Kidney Int. 1999;56:65–73.

    Article  CAS  PubMed  Google Scholar 

  21. Baylis C, Handa RK, Sorkin M. Glucocorticoids and control of glomerular filtration rate. Semin Nephrol. 1990;10:320–9.

    CAS  PubMed  Google Scholar 

  22. Welbourne TC. Glucocorticoid control of ammoniagenesis in the proximal tubule. Semin Nephrol. 1990;10:339–49.

    CAS  PubMed  Google Scholar 

  23. Rodriguez HJ, Sinha SK, Starling J, Klahr S. Regulation of renal Na+-K+-ATPase in the rat by adrenal steroids. Am J Physiol. 1981;241:F186–95.

    CAS  PubMed  Google Scholar 

  24. Freiberg JM, Kinsella J, Sacktor B. Glucocorticoids increase the Na+-H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc Natl Acad Sci U S A. 1982;79:4932–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kinsella J, Cujdik T, Sacktor B. Na+-H+ exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: the role of glucocorticoids. Proc Natl Acad Sci U S A. 1984;81:630–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Frick A, Durasin I. Proximal tubular reabsorption of inorganic phosphate in adrenalectomized rats. Pflugers Arch. 1980;385:189–92.

    Article  CAS  PubMed  Google Scholar 

  27. Welch WJ, Ott CE, Guthrie Jr GP, Kotchen TA. Renin secretion and loop of Henle chloride reabsorption in the adrenalectomized rat. Am J Physiol. 1985;249:F596–602.

    CAS  PubMed  Google Scholar 

  28. Doucet A, Hus-Citharel A, Morel F. In vitro stimulation of Na-K-ATPase in rat thick ascending limb by dexamethasone. Am J Physiol. 1986;251:F851–7.

    CAS  PubMed  Google Scholar 

  29. Stanton BA. Regulation by adrenal corticosteroids of sodium and potassium transport in loop of Henle and distal tubule of rat kidney. J Clin Invest. 1986;78:1612–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Naray-Fejes-Toth A, Fejes-Toth G. Glucocorticoid receptors mediate mineralocorticoid-like effects in cultured collecting duct cells. Am J Physiol. 1990;259:F672–8.

    CAS  PubMed  Google Scholar 

  31. Naray-Fejes-Toth A, Snyder PM, Fejes-Toth G. The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc Natl Acad Sci U S A. 2004;101:17434–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li C, Li Y, Liu H, Sun Z, Lu J, et al. Glucocorticoid repression of human with-no-lysine (K) kinase-4 gene expression is mediated by the negative response elements in the promoter. J Mol Endocrinol. 2008;40:3–12.

    Article  CAS  PubMed  Google Scholar 

  33. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest. 2003;111:1039–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12.

    Article  CAS  PubMed  Google Scholar 

  35. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35:372–6.

    Article  CAS  PubMed  Google Scholar 

  36. Goodwin JE, Zhang J, Velazquez H, Geller DS. The glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension. Biochem Biophys Res Commun. 2010;394:266–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Provencher PH, Saltis J, Funder JW. Glucocorticoids but not mineralocorticoids modulate endothelin-1 and angiotensin II binding in SHR vascular smooth muscle cells. J Steroid Biochem Mol Biol. 1995;52:219–25.

    Article  CAS  PubMed  Google Scholar 

  38. Kornel L, Nelson WA, Manisundaram B, Chigurupati R, Hayashi T. Mechanism of the effects of glucocorticoids and mineralocorticoids on vascular smooth muscle contractility. Steroids. 1993;58:580–7.

    Article  CAS  PubMed  Google Scholar 

  39. Tsugita M, Iwasaki Y, Nishiyama M, Taguchi T, Shinahara M, et al. Differential regulation of 11beta-hydroxysteroid dehydrogenase type-1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells. Life Sci. 2008;83:426–32.

    Article  CAS  PubMed  Google Scholar 

  40. Wallerath T, Witte K, Schafer SC, Schwarz PM, Prellwitz W, et al. Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc Natl Acad Sci U S A. 1999;96:13357–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ray KP, Searle N. Glucocorticoid inhibition of cytokine-induced E-selectin promoter activation. Biochem Soc Trans. 1997;25:189S.

    CAS  PubMed  Google Scholar 

  42. Yang S, Zhang L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol. 2004;2:1–12.

    Article  PubMed  Google Scholar 

  43. Sato A, Suzuki H, Nakazato Y, Shibata H, Inagami T, et al. Increased expression of vascular angiotensin II type 1A receptor gene in glucocorticoid-induced hypertension. J Hypertens. 1994;12:511–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kornel L, Prancan AV, Kanamarlapudi N, Hynes J, Kuzianik E. Study on the mechanisms of glucocorticoid-induced hypertension: glucocorticoids increase transmembrane Ca2+ influx in vascular smooth muscle in vivo. Endocr Res. 1995;21:203–10.

    Article  CAS  PubMed  Google Scholar 

  45. Molnar GA, Lindschau C, Dubrovska G, Mertens PR, Kirsch T, et al. Glucocorticoid-related signaling effects in vascular smooth muscle cells. Hypertension. 2008;51:1372–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ong SL, Zhang Y, Sutton M, Whitworth JA. Hemodynamics of dexamethasone-induced hypertension in the rat. Hypertens Res. 2009;32:889–94.

    Article  CAS  PubMed  Google Scholar 

  47. Goodwin JE, Zhang J, Geller DS. A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol. 2008;19:1291–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Imai Y, Abe K, Sasaki S, Minami N, Munakata M, et al. Exogenous glucocorticoid eliminates or reverses circadian blood pressure variations. J Hypertens. 1989;7:113–20.

    CAS  PubMed  Google Scholar 

  49. Piovesan A, Panarelli M, Terzolo M, Osella G, Matrella C, et al. 24-hour profiles of blood pressure and heart rate in Cushing’s syndrome: relationship between cortisol and cardiovascular rhythmicities. Chronobiol Int. 1990;7:263–5.

    Article  CAS  PubMed  Google Scholar 

  50. Fallo F, Fanelli G, Cipolla A, Betterle C, Boscaro M, et al. 24-hour blood pressure profile in Addison’s disease. Am J Hypertens. 1994;7:1105–9.

    CAS  PubMed  Google Scholar 

  51. Wallerath T, Godecke A, Molojavyi A, Li H, Schrader J, et al. Dexamethasone lacks effect on blood pressure in mice with a disrupted endothelial NO synthase gene. Nitric Oxide. 2004;10:36–41.

    Article  CAS  PubMed  Google Scholar 

  52. Mitchell BM, Dorrance AM, Mack EA, Webb RC. Glucocorticoids decrease GTP cyclohydrolase and tetrahydrobiopterin-dependent vasorelaxation through glucocorticoid receptors. J Cardiovasc Pharmacol. 2004;43:8–13.

    Article  CAS  PubMed  Google Scholar 

  53. Goodwin JE, Zhang J, Gonzalez D, Albinsson S, Geller DS. Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension. J Hypertens. 2011;29(7):1347–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Aras-Lopez R, Xavier FE, Ferrer M, Balfagon G. Dexamethasone decreases neuronal nitric oxide release in mesenteric arteries from hypertensive rats through decreased protein kinase C activation. Clin Sci (Lond). 2009;117:305–12.

    Article  CAS  Google Scholar 

  55. Yudt MR, Cidlowski JA. The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol. 2002;16:1719–26.

    Article  CAS  PubMed  Google Scholar 

  56. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.

    Article  CAS  PubMed  Google Scholar 

  57. Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998;57:113–22.

    Article  CAS  PubMed  Google Scholar 

  58. Slotkin TA, Seidler FJ, Kavlock RJ, Gray JA. Fetal dexamethasone exposure accelerates development of renal function: relationship to dose, cell differentiation and growth inhibition. J Dev Physiol. 1992;17:55–61.

    CAS  PubMed  Google Scholar 

  59. Torres A, Belser 3rd WW, Umeda PK, Tucker D. Indicators of delayed maturation of rat heart treated prenatally with dexamethasone. Pediatr Res. 1997;42:139–44.

    Article  CAS  PubMed  Google Scholar 

  60. Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, et al. Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet. 2013;22:3269–82.

    Article  CAS  PubMed  Google Scholar 

  61. Roghair RD, Segar JL, Sharma RV, Zimmerman MC, Jagadeesha DK, et al. Newborn lamb coronary artery reactivity is programmed by early gestation dexamethasone before the onset of systemic hypertension. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1169–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Volk KA, Roghair RD, Jung F, Scholz TD, Lamb FS, et al. Coronary endothelial function and vascular smooth muscle proliferation are programmed by early-gestation dexamethasone exposure in sheep. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1607–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Crump C, Sundquist K, Sundquist J, Winkleby MA. Gestational age at birth and mortality in young adulthood. JAMA. 2011;306:1233–40.

    Article  CAS  PubMed  Google Scholar 

  64. Huhta JC. Fetal congestive heart failure. Semin Fetal Neonatal Med. 2005;10:542–52.

    Article  PubMed  Google Scholar 

  65. Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol. 2014;52:R125–35.

    Article  CAS  PubMed  Google Scholar 

  66. Vuguin PM. Animal models for small for gestational age and fetal programming of adult disease. Horm Res. 2007;68:113–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lee SR, Kim HK, Youm JB, Dizon LA, Song IS, et al. Non-genomic effect of glucocorticoids on cardiovascular system. Pflugers Arch. 2012;464:549–59.

    Article  CAS  PubMed  Google Scholar 

  68. Losel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol. 2003;4:46–56.

    Article  PubMed  Google Scholar 

  69. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma. 2010;51:1968–2005.

    Article  CAS  PubMed  Google Scholar 

  70. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med. 2002;8:473–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kewalramani G, Puthanveetil P, Kim MS, Wang F, Lee V, et al. Acute dexamethasone-induced increase in cardiac lipoprotein lipase requires activation of both Akt and stress kinases. Am J Physiol Endocrinol Metab. 2008;295:E137–47.

    Article  CAS  PubMed  Google Scholar 

  72. Puthanveetil P, Wang Y, Wang F, Kim MS, Abrahani A, et al. The increase in cardiac pyruvate dehydrogenase kinase-4 after short-term dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis. Endocrinology. 2010;151:2306–18.

    Article  CAS  PubMed  Google Scholar 

  73. Steiner A, Locher R, Sachinidis A, Vetter W. Cortisol-stimulated phosphoinositide metabolism in vascular smooth muscle cells: a role for glucocorticoids in blood pressure control? J Hypertens Suppl. 1989;7:S140–1.

    Article  CAS  PubMed  Google Scholar 

  74. Yano K, Tsuda Y, Kaji Y, Kanaya S, Fujino T, et al. Effects of hydrocortisone on transmembrane currents in guinea pig ventricular myocytes—possible evidence for positive inotropism. Jpn Circ J. 1994;58:836–43.

    Article  CAS  PubMed  Google Scholar 

  75. Brostjan C, Anrather J, Csizmadia V, Stroka D, Soares M, et al. Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve induction of IkappaBalpha synthesis. J Biol Chem. 1996;271:19612–6.

    Article  CAS  PubMed  Google Scholar 

  76. Whitworth JA, Kelly JJ, Brown MA, Williamson PM, Lawson JA. Glucocorticoids and hypertension in man. Clin Exp Hypertens. 1997;19:871–84.

    Article  CAS  PubMed  Google Scholar 

  77. Hua SY, Chen YZ. Membrane receptor-mediated electrophysiological effects of glucocorticoid on mammalian neurons. Endocrinology. 1989;124:687–91.

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt BM, Gerdes D, Feuring M, Falkenstein E, Christ M, et al. Rapid, nongenomic steroid actions: a new age? Front Neuroendocrinol. 2000;21:57–94.

    Article  CAS  PubMed  Google Scholar 

  79. Schoneveld JL, Fritsch-Stork RD, Bijlsma JW. Nongenomic glucocorticoid signaling: new targets for immunosuppressive therapy? Arthritis Rheum. 2011;63:3665–7.

    Article  PubMed  Google Scholar 

  80. DeVries AC, Joh HD, Bernard O, Hattori K, Hurn PD, et al. Social stress exacerbates stroke outcome by suppressing Bcl-2 expression. Proc Natl Acad Sci U S A. 2001;98:11824–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Balkaya M, Prinz V, Custodis F, Gertz K, Kronenberg G, et al. Stress worsens endothelial function and ischemic stroke via glucocorticoids. Stroke. 2011;42:3258–64.

    Article  CAS  PubMed  Google Scholar 

  82. Mihailidou AS, Le Loan TY, Mardini M, Funder JW. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension. 2009;54:1306–12.

    Article  CAS  PubMed  Google Scholar 

  83. Schulz M, Eggert M, Baniahmad A, Dostert A, Heinzel T, et al. RU486-induced glucocorticoid receptor agonism is controlled by the receptor N terminus and by corepressor binding. J Biol Chem. 2002;277:26238–43.

    Article  CAS  PubMed  Google Scholar 

  84. Garcia RA, Go KV, Villarreal FJ. Effects of timed administration of doxycycline or methylprednisolone on post-myocardial infarction inflammation and left ventricular remodeling in the rat heart. Mol Cell Biochem. 2007;300:159–69.

    Article  CAS  PubMed  Google Scholar 

  85. Xu B, Strom J, Chen QM. Dexamethasone induces transcriptional activation of Bcl-xL gene and inhibits cardiac injury by myocardial ischemia. Eur J Pharmacol. 2011;668:194–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Kaljusto ML, Stenslokken KO, Mori T, Panchenko A, Frantzen ML, et al. Preconditioning effects of steroids and hyperoxia on cardiac ischemia-reperfusion injury and vascular reactivity. Eur J Cardiothorac Surg. 2008;33:355–63.

    Article  PubMed  Google Scholar 

  87. Nakamura H, Kunitsugu I, Fukuda K, Matsuzaki M, Sano M. Diverse stage-dependent effects of glucocorticoids in a murine model of viral myocarditis. J Cardiol. 2013;61:237–42.

    Article  CAS  PubMed  Google Scholar 

  88. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361:13–20.

    Article  PubMed  Google Scholar 

  89. Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med. 2002;346:957–66.

    Article  CAS  PubMed  Google Scholar 

  90. Nordmann AJ, Hengstler P, Harr T, Young J, Bucher HC. Clinical outcomes of primary stenting versus balloon angioplasty in patients with myocardial infarction: a meta-analysis of randomized controlled trials. Am J Med. 2004;116:253–62.

    Article  PubMed  Google Scholar 

  91. Jimenez-Valero S, Santos B, Pajin F, Canton T, Lazaro E, et al. Clinical outcomes of dexamethasone-eluting stent implantation in ST-elevation acute myocardial infarction. Catheter Cardiovasc Interv. 2007;70:492–7.

    Article  PubMed  Google Scholar 

  92. Liu X, Huang Y, Hanet C, Vandormael M, Legrand V, et al. Study of antirestenosis with the BiodivYsio dexamethasone-eluting stent (STRIDE): a first-in-human multicenter pilot trial. Catheter Cardiovasc Interv. 2003;60:172–8; discussion 179.

    Article  PubMed  Google Scholar 

  93. Ribichini F, Tomai F, Ferrero V, Versaci F, Boccuzzi G, et al. Immunosuppressive oral prednisone after percutaneous interventions in patients with multi-vessel coronary artery disease. The IMPRESS-2/MVD study. EuroIntervention. 2005;1:173–80.

    PubMed  Google Scholar 

  94. Versaci F, Gaspardone A, Tomai F, Ribichini F, Russo P, et al. Immunosuppressive therapy for the prevention of restenosis after coronary artery stent implantation (IMPRESS Study). J Am Coll Cardiol. 2002;40:1935–42.

    Article  PubMed  Google Scholar 

  95. Ferrero V, Ribichini F, Rognoni A, Marino P, Brunelleschi S, et al. Comparison of efficacy and safety of lower-dose to higher-dose oral prednisone after percutaneous coronary interventions (the IMPRESS-LD study). Am J Cardiol. 2007;99:1082–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie E. Goodwin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodwin, J.E. (2015). Glucocorticoids and the Cardiovascular System. In: Wang, JC., Harris, C. (eds) Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, vol 872. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2895-8_13

Download citation

Publish with us

Policies and ethics