Skip to main content

Individual and Sequential Chromatin Immunoprecipitation Protocols

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1334))

Abstract

DNA regulatory elements nucleate the interaction of several transcription factors in conjunction with ubiquitous and/or tissue-specific cofactors in order to regulate gene expression making it relevant to determine the profiles of cohabitation of several proteins on the chromatin fiber. Chromatin immunoprecipitation (ChIP) has been broadly used to determine the profile of several histone posttranslational modifications as well as transcription factor occupancy in vivo. However, individual ChIP does not resolve whether the epitope under study is present at the same time on a given genomic location. Here we describe the ChIP-re-ChIP assay that represents a direct strategy to determine the in vivo co-localization of proteins or histone posttranslational modifications in a chromatinized template on the basis of double and independent rounds of immunoprecipitation with high-quality ChIP-grade antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tavares L, Dimitrova E, Oxley D et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mokry M, Hatzis P, Schuijers J et al (2012) Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Res 40:148–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hatzis P, Talinidis I (2002) Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol Cell 10:1467–1477

    Article  CAS  PubMed  Google Scholar 

  4. Rincón-Arano H, Valadez-Graham V, Guerrero G et al (2005) YY1 and GATA-1 interaction modulate the chicken 3′-side α-globin enhancer activity. J Mol Biol 349:961–975

    Article  PubMed  Google Scholar 

  5. Song S-H, Hou C, Dean A (2007) A positive role for NLI/Ldb1 in long-range β-globin locus control region function. Mol Cell 28:810–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128:747–762

    Article  CAS  PubMed  Google Scholar 

  7. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8:263–271

    Article  CAS  PubMed  Google Scholar 

  8. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  CAS  PubMed  Google Scholar 

  9. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization and gene expression. Genes Dev 21:3027–3043

    Article  CAS  PubMed  Google Scholar 

  10. Bernstein BE, Mikkersen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  11. Nekrasov M, Soboleva TA, Jack C, Tremethick DJ (2013) Histone variant selectivity at the transcription start site: H2A.Z or H2A.Lap1. Nucleus 4:431–438

    Article  PubMed Central  PubMed  Google Scholar 

  12. Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ (2013) SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 288:13850–13862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shankaranarayanan P, Mendoza-Parra MA, Walia M et al (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat Methods 8:565–567

    Article  CAS  PubMed  Google Scholar 

  14. Mikkersen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  Google Scholar 

  15. Rincón-Arano H, Furlan-Magaril M, Recillas-Targa F (2007) Protection against telomeric-position effects by the chicken cHS4 β-globin insulator. Proc Natl Acad Sci U S A 104:14044–14049

    Article  PubMed Central  PubMed  Google Scholar 

  16. Mendoza-Parra MA, Pattabhiraman S, Gronemeyer H (2012) Sequential chromatin immunoprecipitation protocol for global analysis through massive parallel sequencing (reChIP-seq). Protoc Exch. doi:10.1038/protex.2011.257

    Google Scholar 

  17. Martin D, Pantoja C, Fernández Miñán A et al (2011) Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nat Struct Mol Biol 18:708–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Escamilla-Del-Arenal M, Recillas-Targa F (2008) GATA-1 modulates the chromatin structure and activity of the chicken α-globin enhancer. Mol Cell Biol 28:575–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Dorsett D (1999) Distant liaisons: long range enhancer-promoter interaction in Drosophila. Curr Opin Genet Dev 9:505–514

    Article  CAS  PubMed  Google Scholar 

  20. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Georgina Guerrero and Fernanda Suaste Olmos for her excellent technical assistance. This work was supported by grants from the Dirección General de Asuntos del Personal Académico-UNAM (IN203811 and IN128464), Consejo Nacional de Ciencia y Tecnología, CONACyT (128464 and 220503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Recillas-Targa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Furlan-Magaril, M., Recillas-Targa, F. (2015). Individual and Sequential Chromatin Immunoprecipitation Protocols. In: Leblanc, B., Rodrigue, S. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 1334. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2877-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2877-4_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2876-7

  • Online ISBN: 978-1-4939-2877-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics