Skip to main content

Muscarinic Receptor Gene Transfections and In Vivo Dopamine Electrochemistry: Muscarinic Receptor Control of Dopamine-Dependent Reward and Locomotion

  • Protocol
Muscarinic Receptor: From Structure to Animal Models

Part of the book series: Neuromethods ((NM,volume 107))

  • 755 Accesses

Abstract

Cholinergic neurons in laterodorsal (LDT) and pedunculopontine (PPT) tegmental nuclei respond to novel, arousing stimuli, then directly activate dopamine neurons, and increase dopamine outputs as measured by either in vivo microdialysis or by electrochemistry (described here). These mesopontine cholinergic neurons also directly activate superior colliculus and thalamic systems important for attention to novel stimuli, and for reward-seeking behaviors. M5 muscarinic receptors that activate dopamine neurons and reward-seeking behaviors have been studied using pharmacology, knockout mice, oligonucleotide knockdown, and with electrochemistry and Herpes simplex viral gene transfections (HSV-M5) protocols described here. Protocols for using HSV-M5 genes, and designed M4D and M3D muscarinic receptor genes in behaving mice and for dopamine electrochemistry are presented, along with consequences for drug and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonner TI, Young AC, Brann MR, Buckley NJ (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Yeomans JS (2012) Muscarinic receptors in brain stem and mesopontine cholinergic arousal functions. Handb Exp Pharmacol 208:243–259

    Article  CAS  PubMed  Google Scholar 

  3. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43:149–157

    CAS  PubMed  Google Scholar 

  4. Levey AI (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  CAS  PubMed  Google Scholar 

  5. Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    Article  CAS  PubMed  Google Scholar 

  6. Weiner DM, Brann MR (1989) The distribution of a dopamine D2 receptor mRNA in rat brain. FEBS Lett 253:207–213

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi J, Fulton J, Jia ZP, Abramov-Newerly W, Jamot L, Sud M, Coward D, Ralph M, Roder J, Yeomans J (2002) Increased drinking in mutant mice with truncated M5 muscarinic receptor genes. Pharmacol Biochem Behav 72:117–123

    Article  CAS  PubMed  Google Scholar 

  8. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 98:14096–14101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Redgrave P, Horrell RI (1976) Potentiation of central reward by localised perfusion of acetylcholine and 5-hydroxytryptamine. Nature 262:305–307

    Article  CAS  PubMed  Google Scholar 

  10. Bauco P, Wise RA (1994) Potentiation of lateral hypothalamic and midline mesencephalic brain stimulation reinforcement by nicotine: examination of repeated treatment. J Pharmacol Exp Ther 271:294–301

    CAS  PubMed  Google Scholar 

  11. Yeomans JS, Kofman O, McFarlane V (1985) Cholinergic involvement in lateral hypothalamic rewarding brain stimulation. Brain Res 329:19–26

    Article  CAS  PubMed  Google Scholar 

  12. Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR, Winn P (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 16:714–722

    CAS  PubMed  Google Scholar 

  13. Yeomans JS, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–921

    Article  CAS  PubMed  Google Scholar 

  14. Yeomans JS, Takeuchi J, Baptista M, Flynn DD, Lepik K, Nobrega J, Fulton J, Ralph MR (2000) Brain-stimulation reward thresholds raised by an antisense oligonucleotide for the m5 muscarinic receptor infused near dopamine cells. J Neurosci 20:8861–8867

    CAS  PubMed  Google Scholar 

  15. Sharf R, McKelvey J, Ranaldi R (2006) Blockade of muscarinic acetylcholine receptors in the ventral tegmental area prevents acquisition of food-rewarded operant responding in rats. Psychopharmacology (Berl) 186:113–121

    Article  CAS  Google Scholar 

  16. Rezayof A, Nazari-Serenjeh F, Zarrindast MR, Sepehri H, Delphi L (2007) Morphine-induced place preference: involvement of cholinergic receptors of the ventral tegmental area. Eur J Pharmacol 562:92–102

    Article  CAS  PubMed  Google Scholar 

  17. Rada PV, Mark GP, Yeomans JS, Hoebel BG (2000) Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating, and drinking. Pharmacol Biochem Behav 65:375–379

    Article  CAS  PubMed  Google Scholar 

  18. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    Article  CAS  PubMed  Google Scholar 

  19. Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869

    CAS  PubMed  Google Scholar 

  20. Oakman SA, Faris PL, Cozzari C, Hartman BK (1999) Characterization of the extent of pontomesencephalic cholinergic neurons’ projections to the thalamus: a comparison with projections to midbrain dopaminergic neurons. Neuroscience 94:529–547

    Article  CAS  PubMed  Google Scholar 

  21. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873

    Article  CAS  PubMed  Google Scholar 

  22. Wasserman DI, Wang HG, Rashid AJ, Josselyn SA, Yeomans JS (2013) Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. Eur J Neurosci 38:2774–2785

    Article  PubMed  Google Scholar 

  23. Isa T, Hall WC (2009) Exploring the superior colliculus in vitro. J Neurophysiol 102:2581–2593

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dean P, Redgrave P, Westby GW (1989) Event or emergency? two response systems in the mammalian superior colliculus. Trends Neurosci 12:137–147

    Article  CAS  PubMed  Google Scholar 

  25. Steriade M, Datta S, Paré D, Oakson G, Curró Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559

    CAS  PubMed  Google Scholar 

  26. Paré D, Steriade M, Deschênes M, Bouhassira D (1990) Prolonged enhancement of anterior thalamic synaptic responsiveness by stimulation of a brain-stem cholinergic group. J Neurosci 10:20–33

    PubMed  Google Scholar 

  27. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    Article  CAS  PubMed  Google Scholar 

  28. Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410

    Article  CAS  PubMed  Google Scholar 

  29. Manns ID, Alonso A, Jones BE (2000) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:1505–1518

    CAS  PubMed  Google Scholar 

  30. Dringenberg HC, Olmstead MC (2003) Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats. Neuroscience 119:839–853

    Article  CAS  PubMed  Google Scholar 

  31. Lepore M, Franklin KB (1996) N-methyl-D-aspartate lesions of the pedunculopontine nucleus block acquisition and impair maintenance of responding reinforced with brain stimulation. Neuroscience 71:147–155

    Article  CAS  PubMed  Google Scholar 

  32. Bechara A, van der Kooy D (1989) The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine. J Neurosci 9:3400–3409

    CAS  PubMed  Google Scholar 

  33. Leonard CS, Llinás R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330

    Article  CAS  PubMed  Google Scholar 

  34. Kohlmeier KA, Ishibashi M, Wess J, Bickford ME, Leonard CS (2012) Knockouts reveal overlapping functions of M(2) and M(4) muscarinic receptors and evidence for a local glutamatergic circuit within the laterodorsal tegmental nucleus. J Neurophysiol 108:2751–2766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chapman CA, Yeomans JS, Blaha CD, Blackburn JR (1997) Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience 76:177–186

    Article  CAS  PubMed  Google Scholar 

  36. Yeomans JS, Mathur A, Tampakeras M (1993) Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci 107:1077–1087

    Article  CAS  PubMed  Google Scholar 

  37. Mathur A, Shandarin A, LaViolette SR, Parker J, Yeomans JS (1997) Locomotion and stereotypy induced by scopolamine: contributions of muscarinic receptors near the pedunculopontine tegmental nucleus. Brain Res 775:144–155

    Article  CAS  PubMed  Google Scholar 

  38. Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604

    Article  CAS  PubMed  Google Scholar 

  39. Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomikos GG (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    CAS  PubMed  Google Scholar 

  40. Forster GL, Blaha CD (2003) Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 17:751–762

    Article  PubMed  Google Scholar 

  41. Forster GL, Yeomans JS, Takeuchi J, Blaha CD (2001) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 22:RC190

    Google Scholar 

  42. Steidl S, Miller AD, Blaha CD, Yeomans JS (2011) M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS One 6:e27538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ohno K, Hondo M, Sakurai T (2008) Cholinergic regulation of orexin/hypocretin neurons through M(3) muscarinic receptor in mice. J Pharmacol Sci 106:485–491

    Article  CAS  PubMed  Google Scholar 

  44. Michel FJ, Robillard JM, Trudeau LE (2004) Regulation of rat mesencephalic GABAergic neurones through muscarinic receptors. J Physiol 556:429–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Blaha CD, Phillips AG (1996) A critical assessment of electrochemical procedures applied to the measurement of dopamine and its metabolites during drug-induced and species-typical behaviors. Behav Pharmacol 7:675–708

    Article  CAS  PubMed  Google Scholar 

  46. Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48:225–240

    Article  CAS  PubMed  Google Scholar 

  47. Blaha CD, Lane RF (1983) Chemically modified electrode for in vivo monitoring of brain catecholamines. Brain Res Bull 10:861–864

    Article  CAS  PubMed  Google Scholar 

  48. Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci U S A 99:11452–11457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Fink-Jensen A, Fedorova I, Wortwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91–96

    Article  CAS  PubMed  Google Scholar 

  50. Steidl S, Yeomans JS (2009) M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 328:263–275

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt LS, Miller AD, Lester DB, Bay-Richter C, Schülein C, Frikke-Schmidt H, Wess J, Blaha CD, Woldbye DP, Fink-Jensen A, Wortwein G (2010) Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice. Psychopharmacology (Berl) 207(4):547–558

    Article  CAS  Google Scholar 

  52. Miller AD, Forster GL, Yeomans JS, Blaha CD (2005) Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136:531–538

    Article  CAS  PubMed  Google Scholar 

  53. Forster GL, Falcon AJ, Miller AD, Heruc GA, Blaha CD (2002) Effects of laterodorsal tegmentum lesions on behavioral and dopamine responses evoked by morphine and d-amphetamine. Neuroscience 114:817–823

    Article  CAS  PubMed  Google Scholar 

  54. Jhou TC, Xu SP, Lee MR, Gallen CL, Ikemoto S (2012) Mapping of reinforcing and analgesic effects of the mu opioid agonist endomorphin-1 in the ventral midbrain of the rat. Psychopharmacology (Berl) 224:303–312

    Article  CAS  Google Scholar 

  55. Wasserman DW, Tan JM, Kim J, Yeomans JS (2014) Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. Poster presented at Society for Neuroscience, Washington, D.C., 15–19 November 2014.

    Google Scholar 

  56. Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63:291–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  CAS  PubMed  Google Scholar 

  58. Neve RL, Geller AI (1995) A defective herpes simplex virus vector system for gene delivery into the brain: comparison with alternative gene delivery systems and usefulness for gene therapy. Clin Neurosci 3:262–267

    PubMed  Google Scholar 

  59. Carlezon WA, Boundy VA, Haile CN, Lane SB, Kalb RG, Neve RL, Nestler EJ (1997) Sensitization to morphine induced by viral-mediated gene transfer. Science 277:812–814

    Article  CAS  PubMed  Google Scholar 

  60. Han JH, Kushner SA, Yiu AP, Hsiang HLL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA (2009) Selective erasure of a fear memory. Science 323:1492–1496

    Article  CAS  PubMed  Google Scholar 

  61. Liu M, Thankachan S, Kaur S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Neve R, Shiromani PJ (2008) Orexin (hypocretin) gene transfer diminishes narcoleptic sleep behavior in mice. Eur J Neurosci 28:1382–1393

    Article  PubMed Central  PubMed  Google Scholar 

  62. Franklin KBJ, Paxinos G (2007) The mouse brain stereotaxic coordinates, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  63. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  65. Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our many collaborators and coauthors, including Gina Forster and Anthony Miller (electrochemistry), Haoran Wang, Sheena Josselyn, and Asim Rashid (HSV-M5), Jun Chul Kim and Bryan Roth (AAV-M3D and AAV-M4D), and Junichi Takeuchi, Zheng-ping Jia, John Roder, and Juergen Wess (knockouts).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Yeomans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Steidl, S., Wasserman, D.I., Blaha, C.D., Yeomans, J. (2016). Muscarinic Receptor Gene Transfections and In Vivo Dopamine Electrochemistry: Muscarinic Receptor Control of Dopamine-Dependent Reward and Locomotion. In: Myslivecek, J., Jakubik, J. (eds) Muscarinic Receptor: From Structure to Animal Models. Neuromethods, vol 107. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2858-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2858-3_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2857-6

  • Online ISBN: 978-1-4939-2858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics