Skip to main content

Part of the book series: Fields Institute Monographs ((FIM,volume 34))

  • 2499 Accesses

Abstract

We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candelas, P., de la Ossa, X., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991)

    Article  MATH  Google Scholar 

  2. Candelas, P., de la Ossa, X., Rodriguez-Villegas, F.: Calabi-Yau manifolds over finite fields, I. arXiv preprint hep-th/0012233 (2000)

    Google Scholar 

  3. Candelas, P., de la Ossa, X., Rodriguez-Villegas, F.: Calabi-Yau manifolds over finite fields, II. Fields Inst. Commun. 38, 121–157 (2003)

    Google Scholar 

  4. Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry. American Mathematical Society, Providence (1999)

    Book  MATH  Google Scholar 

  5. Dolgachev, I.: Weighted projective varieties. In: Group Actions and Vector Fields, pp. 34–71. Springer, Berlin/Heidelberg (1982)

    Google Scholar 

  6. Dwork, B.: Generalized Hypergeometric Functions. Oxford Mathematical Monographs. Oxford University Press, New York (1990)

    MATH  Google Scholar 

  7. Gährs, S.: Picard–Fuchs Equations of Special One-Parameter Families of Invertible Polynomials. Springer, New York (2013)

    Book  Google Scholar 

  8. Goto, Y., Kloosterman, R., Yui, N.: Zeta-functions of certain K3-fibered Calabi–Yau threefolds. Int. J. Math. 22(01), 67–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goutet, P.: An explicit factorisation of the zeta functions of Dwork hypersurfaces. Acta Arith. 144(3), 241–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goutet, P.: On the zeta function of a family of quintics. J. Number Theory 130(3), 478–492 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goutet, P.: Isotypic decomposition of the cohomology and factorization of the zeta functions of Dwork hypersurfaces. Finite Fields Appl. 17(2), 113–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goutet, P.: Link between two factorizations of the zeta functions of Dwork hypersurfaces. preprint (2014)

    Google Scholar 

  13. Griffiths, P.A.: On the periods of certain rational integrals: I. Ann. Math. 90(3), 460–495 (1969)

    Article  MATH  Google Scholar 

  14. Griffiths, P.A.: On the periods of certain rational integrals: II. Ann. Math. 90(3), 496–541 (1969)

    Article  Google Scholar 

  15. Griffiths, P., Harris, J.: Principles of Algebraic Geometry, vol. 52. Wiley, New York (2011)

    Google Scholar 

  16. Haessig, C.D.: Equalities, congruences, and quotients of zeta functions in arithmetic mirror symmetry. In: Mirror Symmetry V. AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 159–184. American Mathematical Society, Providence (2007)

    Google Scholar 

  17. Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)

    Book  MATH  Google Scholar 

  18. Katz, N.M.: On the differential equations satisfied by period matrices. Publ. Math. de l’IHÉS 35(1), 71–106 (1968)

    Article  MATH  Google Scholar 

  19. Kloosterman, R.: The zeta function of monomial deformations of Fermat hypersurfaces. Algebra Number Theory 1(4), 421–450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Springer, New York (1984)

    Google Scholar 

  21. Lian, B., Liu, K., Yau, S.T.: Mirror principle I. arXiv preprint alg-geom/9712011 (1997)

    Google Scholar 

  22. Morrison, D.R.: Picard-Fuchs equations and mirror maps for hypersurfaces. arXiv preprint alg-geom/9202026 (1992)

    Google Scholar 

  23. Schwarz, A., Shapiro, I.: Twisted de Rham cohomology, homological definition of the integral and “Physics over a ring”. Nucl. Phys. B 809(3), 547–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shapiro, I.: Frobenius map for quintic threefolds. Int. Math. Res. Not. 2(13), 2519–2545 (2009)

    Google Scholar 

  25. Voisin, C.: Hodge Theory and Complex Algebraic Geometry I, vol. 1. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  26. Wan, D.: Mirror symmetry for zeta functions. AMS/IP Stud. Adv. Math. 38, 159–184 (2006)

    Google Scholar 

  27. Yui, N., Kadir, S.: Motives and mirror symmetry for Calabi-Yau orbifolds. In: Modular Forms and String Duality. Fields Institute Communications, vol. 54, pp. 3–46. American Mathematical Society, Providence (2008)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for helpful remarks that resulted in large improvements to this document. Thanks is also due to Professor Noriko Yui for helpful suggestions and tireless encouragement during the preparation of this manuscript. The author’s work is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through the Discovery Grant of Noriko Yui. The author held a visiting position at the Fields Institute during the preparation of these notes, and would like to thank this institution for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrija Peruničić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peruničić, A. (2015). Introduction to Arithmetic Mirror Symmetry. In: Laza, R., Schütt, M., Yui, N. (eds) Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2830-9_15

Download citation

Publish with us

Policies and ethics